Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2016, Vol. 4 Issue (3): 192-206   https://doi.org/10.1007/s40484-016-0078-x
  本期目录
An overview of major metagenomic studies on human microbiomes in health and disease
Hongfei Cui1, Yingxue Li1, Xuegong Zhang1,2()
1. MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Center for Synthetic and Systems Biology/Department of Automation, Tsinghua University, Beijing 100084, China
2. School of Life Sciences, Tsinghua University, Beijing 100084, China
 全文: PDF(787 KB)   HTML
Abstract

Many microbes are important symbiotes of human. They form specific microbiota communities, participate in various kinds of biological processes of their host and thus deeply affect human health status. Metagenomic sequencing has been widely used in human microbiota study due to its capacity of studying all genetic materials in an environment as a whole without any extra need of isolation or cultivation of microorganisms. Many efforts have been made by researchers in this area trying to dig out interesting knowledge from various metagenome data. In this review, we go through some prominent studies in the metagenomic area. We summarize them into three categories, constructing taxonomy and gene reference, characterization of microbiome distribution patterns, and detection of microbiome alternations associated with specific human phenotypes or diseases. Some available data resources are also provided. This review can serve as an entrance to this exciting and rapidly developing field for researchers interested in human microbiomes.

Author Summary  

 

Human symbiotic microbes are our important “tiny friends”. They form microbiota communities, participate in multiple types of our biological processes and thus deeply affect our health status. The importance and intricacy of human microbiota studies have attracted extensive attentions. Metagenomic sequencing is one of the most widely used strategies in human microbiota study. Here, we gather the scattered achievements in metagenomic area and comb through their valuable ideas and resources from our perspective. We hope this review can serve as an entrance to this exciting and rapidly developing field for researchers interested in human microbiomes.

Key wordsmetagenome    human microbiome    taxonomy and gene reference    distribution pattern    microbiome variation
收稿日期: 2016-01-30      出版日期: 2016-09-07
Corresponding Author(s): Xuegong Zhang   
 引用本文:   
. [J]. Quantitative Biology, 2016, 4(3): 192-206.
Hongfei Cui, Yingxue Li, Xuegong Zhang. An overview of major metagenomic studies on human microbiomes in health and disease. Quant. Biol., 2016, 4(3): 192-206.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-016-0078-x
https://academic.hep.com.cn/qb/CN/Y2016/V4/I3/192
Fig.1  
Study/Document Reference name Reference type Body site Data provided
Quast et al. 2013 [16] SILVA rRNA Not specific 1,756,783 small subunit and 96,642 large subunit
DeSantis et al. 2006 [17] Greengenes rRNA Not specific 1,262,986 16S rRNAs
Cole et al. 2014 [18] RDP rRNA Not specific 3,224,600 16S rRNAs and 108,901 fungal 28S rRNAs
NCBI Resource Coordinators, 2016 [19] NCBI genome Genome Not specific 8,075 bacteria, 521 archaea, 1,675 eukaryota, 5,428 viruses and 48 viroids
Markowitz et al. 2014 [20] IMG (Genome) Genome Not specific 34,186 bacteria, 675 archaea, 220 eukaryota, 1,193 plasmids and 3,905 viruses and 1,192 assembled genome fragments
Chen et al. 2010 [21] HOMD Genome Oral cavity 1,530 annotated genomes from 406 Human Oral Taxon
Nielsen et al. 2014 [22] Genome Gut 238
NCBI Resource Coordinators, 2016 [19] NCBI nr Gene Not specific 83,785,854
Kanehisa et al. 2016 [23] KEGG Gene Not specific 17,956,002 genes related to 19,214 KEGG Ortholog groups (KOs)
The UniProt Consortium 2016 [24] UniProt Gene Not specific 550,740 Swiss-Prot sequences and 63,039,659 TrEMBL sequences
The HMP Consortium, 2012 [25] HMP Gene 15 body sites 15,006,602 in Total
Li et al. 2014 [26] IGC Gene Gut 9,879,896
Qin et al. 2014 [27] Liver cirrhosis catalogue Gene Gut 2,688,468
Oh et al. 2014 [28] Gene Skin 5,922,920
Feng et al. 2015 [29] Gene Gut ~3.5 million
Meyer et al. 2008 [30] MG-RAST Metagenome Not specific 33,809 samples from 1,159 metagenomic projects
Hunter et al. 2014 [31] EBI metagenomics Metagenome Not specific 7,085 metagenome samples, 884 metatranscriptome samples, 18,820 amplication samples and 69 assemblies from 182 projects
Markowitz et al. 2014 [20] IMG (Metagenome) Metagenome Not specific 4,842 metagenome samples from 244 projects
Tab.1  
Study Body site Aim of study
Qin et al. 2010 [38] Gut General survey
The HMP Consortium, 2012 [25] Multiple sites General survey
Li et al. 2014 [26] Gut General survey
Oh et al. 2014 [28] Skin General survey
Zhou et al. 2007 [61] Vagina Community type
Ravel et al. 2012 [64] Vagina CST
Mehta et al. 2015 [65] Vagina CST
DiGiulio et al. 2015 [67] Vagina CST
Arumugam et al. 2011 [69] Gut Enterotype
Wu et al. 2011 [70] Gut Enterotype
Qin et al. 2012 [41] Gut Enterotype
Moeller et al. 2012 [71] Gut Enterotype
Knights et al. 2014 [73] Gut Rethinking of enterotype
Feng et al. 2015 [29] Gut Enterotype and microbioal community type
Ding et al. 2014 [74] Multiple sites Microbioal community type
Franzosa et al. 2015 [75] Multiple sites Metagenomic code
David et al. 2012 [79] Gut and saliva Dynamics
Lozupone et al. 2012 [78] Gut Dynamics
Sharon et al. 2013 [76] Gut Dynamics
Faith et al. 2013 [77] Gut Dynamics
Tab.2  
Study Main phenotype Body site Number of individuals Main features Main data accession
Single phenotype
Smith et al. 2013 [80] Kwashiorkor Gut 317 pairs Taxa, functions EBI accessions ERP001928 and ERP001911
Le Chatelier et al. 2013 [55] Obesity Gut 292 Genes EBI accession ERP003612
Dewulf et al. 2013 [81] Obesity Gut 30 Taxa
Cotillard et al. 2013 [82] Diet, Obesity Gut 49 Genes EBI accession ERP003699
Adler et al. 2013 [83] Diet of ancient Ancient dental calculus 34 Taxa EBI or SRA accession ERP002107
David et al. 2014 [84] Diet Gut 10 Taxa, functions GEO accession GSE46761 and MG-RAST accession 6248
Qin et al. 2012 [41] Diabetes Gut 345 Taxa(MLGs), functions SRA accession SRA045646 and SRA050230
Karlsson et al. 2013 [85] Diabetes Gut 145 Taxa(MGCs), functions EBI or SRA accession ERP002469
Rajilic-Stojanovic et al. 2011 [86] IBS Gut 108 Taxa
Saulnier et al. 2011 [87] IBS Gut 44 Taxa SRA accession SRP002457
Qin et al. 2010 [38] IBD Gut 124 Taxa, functions EBI accession ERA000116, http://www.bork.embl.de/~arumugam/Qin_et_al_2010/
Gevers et al. 2014 [88] IBD Gut 668 Taxa BioProjects accessions PRJNA237362 and PRJNA205152
Zhu et al. 2013 [89] Fatty liver Gut 63 Taxa MG-RAST accession 1195
Qin et al. 2014 [27] Cirrhosis Gut 181 Taxa(MGS), functions EBI accession ERP005860
Karlsson et al. 2012 [90] Atherosclerosis Gut 27 Taxa, functions SRA accession SRA059451
Kostic et al. 2012 [91] Cancer Colorectal carcinoma tumors and adjacent non-affected tissues 18+190 Taxa SRA accession SRP000383
Yu et al. 2015 [92] Cancer Gut 168+40 Taxa(MLGs), functions EBI accession PRJEB10878
Feng et al. 2015 [29] Cancer Gut 156 Taxa(MLGs), functions EBI accession ERP008729
Tyakht et al. 2013 [93] Urban/countryside Gut 96 Taxa, functions SRA accession SRA059011, http://www.metagenome.ru/files/rus_met/
Koren et al. 2012 [94] Pregnant Gut 91 Taxa
DiGiulio et al. 2015 [67] Pregnant Vagina, gut, saliva, and tooth/gum 49 Taxa SRA accession SRP288562 (Not available now)
Belda-Ferre et al. 2012 [95] Oral diseases Supragingival plaque 25 Taxa, functions MG-RAST accessions 4447192.3, 4447102.3, 4447103.3, 4447101.3, 4447943.3, 4447903.3, 4447971.3 and 4447970.3
Wang et al. 2013 [96] Oral diseases Dental surface and plaque 16 Taxa, functions
Duran-Pinedo et al. 2014 [97] Oral diseases Subgingival plaque 13 Taxa, functions ftp://ftp.homd.org/publication_data/20130522/
Yang et al. 2009 [98] Distal esophagus diseases Biopsy samples of the distal esophagus 34 Taxa GEO accessions DQ537536-DQ537935 and DQ632752-DQ639751
Tunney et al. 2013 [99] Bronchiectasis Sputum 40 Taxa EBI or SRA accession ERP002060
Marri et al. 2013 [100] Asthma Sputum 20 Taxa
Morris et al. 2013 [101] Smoke Upper and lower respiratory tract 45 Taxa
Multiple phenotypes
Yatsunenko et al. 2012 [102] Country, age Gut 531 Taxa, genes MG-RAST accession ‘qiime:850’ and ‘qiime:621’
Claesson et al. 2012 [103] Diet, health Gut 178 Taxa, genes MG-RAST accession 154
Stahringer et al. 2012 [104] Host gene, age Saliva 107 Taxa EBI or SRA accession ERP001346
Lozupone et al. 2013 [105] Body sites, studies Multiple sites Public data Taxa Public data
Lax et al. 2014 [106] Family, indoor environment, time Skin 15+3+3+1 Taxa EBI accession ERP005806
Tab.3  
1 D. C. Savage, (1977) Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol., 31, 107–133
https://doi.org/10.1146/annurev.mi.31.100177.000543 pmid: 334036
2 J. O. Lundberg, , E. Weitzberg, , J. A. Cole, and N. Benjamin, (2004) Nitrate, bacteria and human health. Nat. Rev. Microbiol., 2, 593–602
https://doi.org/10.1038/nrmicro929 pmid: 15197394
3 D. A. Relman, (2011) Microbial genomics and infectious diseases. N. Engl. J. Med., 365, 347–357
https://doi.org/10.1056/NEJMra1003071 pmid: 21793746
4 N. J. Loman, , C. Constantinidou, , M. Christner, , H. Rohde, , J. Z. Chan, , J. Quick, , J. C. Weir, , C. Quince, , G. P. Smith, , J. R. Betley, , et al. (2013) A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA, 309, 1502–1510
https://doi.org/10.1001/jama.2013.3231 pmid: 23571589
5 N. Kamada, , G. Y. Chen, , N. Inohara, and G. Núñez, (2013) Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol., 14, 685–690.
https://doi.org/10.1038/ni.2608 pmid: 23778796
6 R. L. Gallo, and L. V. Hooper, (2012) Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol., 12, 503–516
https://doi.org/10.1038/nri3228 pmid: 22728527
7 P. D. Schloss, and J. Handelsman, (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol., 6, 229
https://doi.org/10.1186/gb-2005-6-8-229 pmid: 16086859
8 E. J. van Opstal, and S. R. Bordenstein, (2015) MICROBIOME. Rethinking heritability of the microbiome. Science, 349, 1172–1173
https://doi.org/10.1126/science.aab3958 pmid: 26359393
9 J. Handelsman, , M. R. Rondon, , S. F. Brady, , J. Clardy, and R. M. Goodman, (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol., 5, R245–R249
https://doi.org/10.1016/S1074-5521(98)90108-9 pmid: 9818143
10 S. Sunagawa, , L. P. Coelho, , S. Chaffron, , J. R. Kultima, , K. Labadie, , G. Salazar, , B. Djahanschiri, , G. Zeller, , D. R. Mende, , A. Alberti, , et al. (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science, 348, 1261359
https://doi.org/10.1126/science.1261359 pmid: 25999513
11 D. Debroas, , J. F. Humbert, , F. Enault, , G. Bronner, , M. Faubladier, and E. Cornillot, (2009) Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget—France). Environ. Microbiol., 11, 2412–2424
https://doi.org/10.1111/j.1462-2920.2009.01969.x pmid: 19558513
12 M. R. Rondon, , P. R. August, , A. D. Bettermann, , S. F. Brady, , T. H. Grossman, , M. R. Liles, , K. A. Loiacono, , B. A. Lynch, , I. A. MacNeil, , C. Minor, , et al. (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol., 66, 2541–2547
https://doi.org/10.1128/AEM.66.6.2541-2547.2000 pmid: 10831436
13 G. Cesaroni, , F. Forastiere, , M. Stafoggia, , Z. J. Andersen, , C. Badaloni, , R. Beelen, , B. Caracciolo, , U. de Faire, , R. Erbel, , K. T. Eriksen, , et al. (2014) Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ, 348, f7412
https://doi.org/10.1136/bmj.f7412 pmid: 24452269
14 A. Walker, (2010) A glut from the gut: metagenomics takes a giant step foward. Nat. Rev. Microbiol., 8, 315
https://doi.org/10.1038/nrmicro2363 pmid: 20395965
15 P. Lepage, , M. C. Leclerc, , M. Joossens, , S. Mondot, , H. M. Blottière, , J. Raes, , D. Ehrlich, and J. Doré, (2013) A metagenomic insight into our gut’s microbiome. Gut, 62, 146–158.
https://doi.org/10.1136/gutjnl-2011-301805 pmid: 22525886
16 C. Quast, , E. Pruesse, , P. Yilmaz, , J. Gerken, , T. Schweer, , P. Yarza, , J. Peplies, and F. O. Glöckner, (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res., 41, D590–D596
https://doi.org/10.1093/nar/gks1219 pmid: 23193283
17 T. Z. DeSantis, , P. Hugenholtz, , N. Larsen, , M. Rojas, , E. L. Brodie, , K. Keller, , T. Huber, , D. Dalevi, , P. Hu, and G. L. Andersen, (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol., 72, 5069–5072
https://doi.org/10.1128/AEM.03006-05 pmid: 16820507
18 J. R. Cole, , Q. Wang, , J. A. Fish, , B. Chai, , D. M. McGarrell, , Y. Sun, , C. T. Brown, , A. Porras-Alfaro, , C. R. Kuske, and J. M. Tiedje, (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res., 42, D633–D642
https://doi.org/10.1093/nar/gkt1244 pmid: 24288368
19 NCBI Resource Coordinators. (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 44, D7–D19
https://doi.org/10.1093/nar/gkv1290 pmid: 26615191
20 V. M. Markowitz, , I. M. Chen, , K. Palaniappan, , K. Chu, , E. Szeto, , M. Pillay, , A. Ratner, , J. Huang, , T. Woyke, , M. Huntemann, , et al. (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res., 42, D560–D567
https://doi.org/10.1093/nar/gkt963 pmid: 24165883
21 T. Chen, , W. H. Yu, , J. Izard, , O. V. Baranova, , A. Lakshmanan, and F. E. Dewhirst, (2010) The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford), 2010, baq013
https://doi.org/10.1093/database/baq013 pmid: 20624719
22 H. B. Nielsen, , M. Almeida, , A. S. Juncker, , S. Rasmussen, , J. Li, , S. Sunagawa, , D. R. Plichta, , L. Gautier, , A. G. Pedersen, , E. Le Chatelier, , et al. (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol., 32, 822–828
https://doi.org/10.1038/nbt.2939 pmid: 24997787
23 M. Kanehisa, , Y. Sato, , M. Kawashima, , M. Furumichi, and M. Tanabe, (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 44, D457–D462
https://doi.org/10.1093/nar/gkv1070 pmid: 26476454
24 UniProt Consortium. (2015) UniProt: a hub for protein information. Nucleic Acids Res., 43, D204–D212
https://doi.org/10.1093/nar/gku989 pmid: 25348405
25 C. Huttenhower, , D. Gevers, , R. Knight, , S. Abubucker, , J. H. Badger, , A. T. Chinwalla, , H. H. Creasy, , A. M. Earl, , M. G. FitzGerald, , R. S. Fulton, , et al. (2012) Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214
https://doi.org/10.1038/nature11234 pmid: 22699609
26 J. Li, , H. Jia, , X. Cai, , H. Zhong, , Q. Feng, , S. Sunagawa, , M. Arumugam, , J. R. Kultima, , E. Prifti, , T. Nielsen, , et al. (2014) An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol., 32, 834–841
https://doi.org/10.1038/nbt.2942 pmid: 24997786
27 N. Qin, , F. Yang, , A. Li, , E. Prifti, , Y. Chen, , L. Shao, , J. Guo, , E. Le Chatelier, , J. Yao, , L. Wu, , et al. (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature, 513, 59–64
https://doi.org/10.1038/nature13568 pmid: 25079328
28 J. Oh, , A. L. Byrd, , C. Deming, , S. Conlan, , H. H. Kong, , J. A. Segre, , J. A. Segre, , and the NISC Comparative Sequencing Program. (2014) Biogeography and individuality shape function in the human skin metagenome. Nature, 514, 59–64
https://doi.org/10.1038/nature13786 pmid: 25279917
29 Q. Feng, , S. Liang, , H. Jia, , A. Stadlmayr, , L. Tang, , Z. Lan, , D. Zhang, , H. Xia, , X. Xu, , Z. Jie, ,et al.(2015) Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun., 6, 6528
https://doi.org/10.1038/ncomms7528 pmid: 25758642
30 F. Meyer, , D. Paarmann, , M. D’Souza, , R. Olson, , E. M. Glass, , M. Kubal, , T. Paczian, , A. Rodriguez, , R. Stevens, , A. Wilke, , et al. (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9, 386
https://doi.org/10.1186/1471-2105-9-386 pmid: 18803844
31 S. Hunter, , M. Corbett, , H. Denise, , M. Fraser, , A. Gonzalez-Beltran, , C. Hunter, , P. Jones, , R. Leinonen, , C. McAnulla, , E. Maguire, , et al.(2014) EBI metagenomics—a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res., 42, D600–D606
https://doi.org/10.1093/nar/gkt961 pmid: 24165880
32 C. R. Woese, (1987) Bacterial evolution. Microbiol. Rev., 51, 221–271
pmid: 2439888
33 S. F. Stoddard, , B. J. Smith, , R. Hein, , B. R. Roller, and T. M. Schmidt, (2015) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res., 43, D593–D598
https://doi.org/10.1093/nar/gku1201 pmid: 25414355
34 H. Li, and R. Durbin, (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760
https://doi.org/10.1093/bioinformatics/btp324 pmid: 19451168
35 B. Langmead, and S. L. Salzberg, (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359
https://doi.org/10.1038/nmeth.1923 pmid: 22388286
36 R. Li, , C. Yu, , Y. Li, , T. W. Lam, , S. M. Yiu, , K. Kristiansen, and J. Wang, (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967
https://doi.org/10.1093/bioinformatics/btp336 pmid: 19497933
37 B. A. Methé, , K. E. Nelson, , M. Pop, , H. H. Creasy, , M. G. Giglio, , C. Huttenhower, , D. Gevers, , J. F. Petrosino, , S. Abubucker, , J. H. Badger, , et al. (2012) A framework for human microbiome research. Nature, 486, 215–221
https://doi.org/10.1038/nature11209 pmid: 22699610
38 J. Qin, , R. Li, , J. Raes, , M. Arumugam, , K. S. Burgdorf, , C. Manichanh, , T. Nielsen, , N. Pons, , F. Levenez, , T. Yamada, , et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65
https://doi.org/10.1038/nature08821 pmid: 20203603
39 D. E. Wood, and S. L. Salzberg, (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol., 15, R46
https://doi.org/10.1186/gb-2014-15-3-r46 pmid: 24580807
40 B. Jia, , L. Xuan, , K. Cai, , Z. Hu, , L. Ma, and C. Wei, (2013) NeSSM: a next-generation sequencing simulator for metagenomics. PLoS One, 8, e75448
https://doi.org/10.1371/journal.pone.0075448 pmid: 24124490
41 J. Qin, , Y. Li, , Z. Cai, , S. Li, , J. Zhu, , F. Zhang, , S. Liang, , W. Zhang, , Y. Guan, , D. Shen, , (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60
https://doi.org/10.1038/nature11450 pmid: 23023125
42 B. J. Baker, , C. S. Sheik, , C. A. Taylor, , S. Jain, , A. Bhasi, , J. D. Cavalcoli, and G. J. Dick, (2013) Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J., 7, 1962–1973
https://doi.org/10.1038/ismej.2013.85 pmid: 23702516
43 W. P. Inskeep, , Z. J. Jay, , M. J. Herrgard, , M. A. Kozubal, , D. B. Rusch, , S. G. Tringe, , R. E. Macur, , R. Jennings, , E. S. Boyd, , J. R. Spear, , et al. (2013) Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front. Microbiol., 4, 95
https://doi.org/10.3389/fmicb.2013.00095 pmid: 23720654
44 N. Segata, , L. Waldron, , A. Ballarini, , V. Narasimhan, , O. Jousson, and C. Huttenhower, (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods, 9, 811–814
https://doi.org/10.1038/nmeth.2066 pmid: 22688413
45 P. Jagtap, , T. McGowan, , S. Bandhakavi, , Z. J. Tu, , S. Seymour, , T. J. Griffin, and J. D. Rudney, (2012) Deep metaproteomic analysis of human salivary supernatant. Proteomics, 12, 992–1001
https://doi.org/10.1002/pmic.201100503 pmid: 22522805
46 B. Liu, , L. L. Faller, , N. Klitgord, , V. Mazumdar, , M. Ghodsi, , D. D. Sommer, , T. R. Gibbons, , T. J. Treangen, , Y. C. Chang, , S. Li, , et al. (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One, 7, e37919
https://doi.org/10.1371/journal.pone.0037919 pmid: 22675498
47 C. Warinner, , J. F. Rodrigues, , R. Vyas, , C. Trachsel, , N. Shved, , J. Grossmann, , A. Radini, , Y. Hancock, , R. Y. Tito, , S. Fiddyment, , et al. (2014) Pathogens and host immunity in the ancient human oral cavity. Nat. Genet., 46, 336–344
https://doi.org/10.1038/ng.2906 pmid: 24562188
48 R. Luo, , B. Liu, , Y. Xie, , Z. Li, , W. Huang, , J. Yuan, , G. He, , Y. Chen, , Q. Pan, , Y. Liu, , et al. (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 1, 18
https://doi.org/10.1186/2047-217X-1-18 pmid: 23587118
49 T. Namiki, , T. Hachiya, , H. Tanaka, and Y. Sakakibara, (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res., 40, e155
https://doi.org/10.1093/nar/gks678 pmid: 22821567
50 Y. Peng, , H. C. Leung, , S. M. Yiu, and F. Y. Chin, (2011) Meta-IDBA: a de novo assembler for metagenomic data. Bioinformatics, 27, i94–i101
https://doi.org/10.1093/bioinformatics/btr216 pmid: 21685107
51 W. Zhu, , A. Lomsadze, and M. Borodovsky, (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res., 38, e132
https://doi.org/10.1093/nar/gkq275 pmid: 20403810
52 A. L. Delcher, , D. Harmon, , S. Kasif, , O. White, and S. L. Salzberg, (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res., 27, 4636–4641
https://doi.org/10.1093/nar/27.23.4636 pmid: 10556321
53 L. Fu, , B. Niu, , Z. Zhu, , S. Wu, and W. Li, (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28, 3150–3152
https://doi.org/10.1093/bioinformatics/bts565 pmid: 23060610
54 R. C. Edgar, (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461
https://doi.org/10.1093/bioinformatics/btq461 pmid: 20709691
55 E. Le Chatelier, , T. Nielsen, , J. Qin, , E. Prifti, , F. Hildebrand, , G. Falony, , M. Almeida, , M. Arumugam, , J. M. Batto, , S. Kennedy, , et al. (2013) Richness of human gut microbiome correlates with metabolic markers. Nature, 500, 541–546
https://doi.org/10.1038/nature12506 pmid: 23985870
56 R. L. Tatusov, , E. V. Koonin, and D. J. Lipman, (1997) A genomic perspective on protein families. Science, 278, 631–637
https://doi.org/10.1126/science.278.5338.631 pmid: 9381173
57 R. Overbeek, , T. Begley, , R. M. Butler, , J. V. Choudhuri, , H. Y. Chuang, , M. Cohoon, , V. de Crécy-Lagard, , N. Diaz, , T. Disz, , R. Edwards, , et al. (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res., 33, 5691–5702
https://doi.org/10.1093/nar/gki866 pmid: 16214803
58 R. D. Finn, , P. Coggill, , R. Y. Eberhardt, , S. R. Eddy, , J. Mistry, , A. L. Mitchell, , S. C. Potter, , M. Punta, , M. Qureshi, , A. Sangrador-Vegas, , et al. (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res., 44, D279–D285
https://doi.org/10.1093/nar/gkv1344 pmid: 26673716
59 J. D. Selengut, , D. H. Haft, , T. Davidsen, , A. Ganapathy, , M. Gwinn-Giglio, , W. C. Nelson, , A. R. Richter, and O. White, (2007) TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res., 35, D260–D264
https://doi.org/10.1093/nar/gkl1043 pmid: 17151080
60 D. H. Huson, , A. F. Auch, , J. Qi, and S. C. Schuster, (2007) MEGAN analysis of metagenomic data. Genome Res., 17, 377–386
https://doi.org/10.1101/gr.5969107 pmid: 17255551
61 X. Zhou, , C. J. Brown, , Z. Abdo, , C. C. Davis, , M. A. Hansmann, , P. Joyce, , J. A. Foster, and L. J. Forney, (2007) Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J., 1, 121–133
https://doi.org/10.1038/ismej.2007.12 pmid: 18043622
62 R. M. Brotman, , L. L. Bradford, , M. Conrad, , P. Gajer, , K. Ault, , L. Peralta, , L. J. Forney, , J. M. Carlton, , Z. Abdo, and J. Ravel, (2012) Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women. Sex. Transm. Dis., 39, 807–812
https://doi.org/10.1097/OLQ.0b013e3182631c79 pmid: 23007708
63 R. M. Brotman, , M. D. Shardell, , P. Gajer, , D. Fadrosh, , K. Chang, , M. I. Silver, , R. P. Viscidi, , A. E. Burke, , J. Ravel, and P. E. Gravitt, (2014) Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause, 21, 450–458
https://doi.org/10.1097/GME.0b013e3182a4690b pmid: 24080849
64 J. Ravel, , P. Gajer, , L. Fu, , C. K. Mauck, , S. S. Koenig, , J. Sakamoto, , A. A. Motsinger-Reif, , G. F. Doncel, and S. L. Zeichner, (2012) Twice-daily application of HIV microbicides alter the vaginal microbiota. MBio, 3, e00370-12
https://doi.org/10.1128/mBio.00370-12 pmid: 23249810
65 S. D. Mehta, , B. Donovan, , K. M. Weber, , M. Cohen, , J. Ravel, , P. Gajer, , D. Gilbert, , D. Burgad, and G. T. Spear, (2015) The vaginal microbiota over an 8- to 10-year period in a cohort of HIV-infected and HIV-uninfected women. PLoS One, 10, e0116894
https://doi.org/10.1371/journal.pone.0116894 pmid: 25675346
66 R. Romero, , S. S. Hassan, , P. Gajer, , A. L. Tarca, , D. W. Fadrosh, , L. Nikita, , M. Galuppi, , R. F. Lamont, , P. Chaemsaithong, , J. Miranda, , et al. (2014) The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome, 2, 4
https://doi.org/10.1186/2049-2618-2-4 pmid: 24484853
67 D. B. DiGiulio, , B. J. Callahan, , P. J. McMurdie, , E. K. Costello, , D. J. Lyell, , A. Robaczewska, , C. L. Sun, , D. S. Goltsman, , R. J. Wong, , G. Shaw, , et al. (2015) Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA, 112, 11060–11065
https://doi.org/10.1073/pnas.1502875112 pmid: 26283357
68 Y. E. Huang, , Y. Wang, , Y. He, , Y. Ji, , L. P. Wang, , H. F. Sheng, , M. Zhang, , Q. T. Huang, , D. J. Zhang, , J. J. Wu, , et al. (2015) Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Microb. Ecol., 69, 407–414
https://doi.org/10.1007/s00248-014-0487-1 pmid: 25230887
69 M. Arumugam, , J. Raes, , E. Pelletier, , D. Le Paslier, , T. Yamada, , D. R. Mende, , G. R. Fernandes, , J. Tap, , T. Bruls, , J. M. Batto, , et al.(2011) Enterotypes of the human gut microbiome. Nature, 473, 174–180
https://doi.org/10.1038/nature09944 pmid: 21508958
70 G. D. Wu, , J. Chen, , C. Hoffmann, , K. Bittinger, , Y. Y. Chen, , S. A. Keilbaugh, , M. Bewtra, , D. Knights, , W. A. Walters, , R. Knight, , et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105–108
https://doi.org/10.1126/science.1208344 pmid: 21885731
71 A. H. Moeller, , P. H. Degnan, , A. E. Pusey, , M. L. Wilson, , B. H. Hahn, and H. Ochman, (2012) Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat. Commun., 3, 1179
https://doi.org/10.1038/ncomms2159 pmid: 23149725
72 I. B. Jeffery, , M. J. Claesson, , P. W. O’Toole, and F. Shanahan, (2012) Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol., 10, 591–592
https://doi.org/10.1038/nrmicro2859 pmid: 23066529
73 D. Knights, , T. L. Ward, , C. E. McKinlay, , H. Miller, , A. Gonzalez, , D. McDonald, and R. Knight, (2014) Rethinking “enterotypes”. Cell Host Microbe, 16, 433–437
https://doi.org/10.1016/j.chom.2014.09.013 pmid: 25299329
74 T. Ding, and P. D. Schloss, (2014) Dynamics and associations of microbial community types across the human body. Nature, 509, 357–360
https://doi.org/10.1038/nature13178 pmid: 24739969
75 E. A. Franzosa, , K. Huang, , J. F. Meadow, , D. Gevers, , K. P. Lemon, , B. J. Bohannan, and C. Huttenhower, (2015) Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA, 112, E2930–E2938
https://doi.org/10.1073/pnas.1423854112 pmid: 25964341
76 I. Sharon, , M. J. Morowitz, , B. C. Thomas, , E. K. Costello, , D. A. Relman, and J. F. Banfield, (2013) Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res., 23, 111–120
https://doi.org/10.1101/gr.142315.112 pmid: 22936250
77 J. J. Faith, , J. L. Guruge, , M. Charbonneau, , S. Subramanian, , H. Seedorf, , A. L. Goodman, , J. C. Clemente, , R. Knight, , A. C. Heath, , R. L. Leibel, , et al. (2013) The long-term stability of the human gut microbiota. Science, 341, 1237439
https://doi.org/10.1126/science.1237439 pmid: 23828941
78 C. A. Lozupone, , J. I. Stombaugh, , J. I. Gordon, , J. K. Jansson, and R. Knight, (2012) Diversity, stability and resilience of the human gut microbiota. Nature, 489, 220–230
https://doi.org/10.1038/nature11550 pmid: 22972295
79 L. A. David, , A. C. Materna, , J. Friedman, , M. I. Campos-Baptista, , M. C. Blackburn, , A. Perrotta, , S. E. Erdman, and E. J. Alm, (2014) Host lifestyle affects human microbiota on daily timescales. Genome Biol., 15, R89
https://doi.org/10.1186/gb-2014-15-7-r89 pmid: 25146375
80 M. I. Smith, , T. Yatsunenko, , M. J. Manary, , I. Trehan, , R. Mkakosya, , J. Cheng, , A. L. Kau, , S. S. Rich, , P. Concannon, , J. C. Mychaleckyj, ,et al. (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science, 339, 548–554
https://doi.org/10.1126/science.1229000 pmid: 23363771
81 E. M. Dewulf, , P. D. Cani, , S. P. Claus, , S. Fuentes, , P. G. Puylaert, , A. M. Neyrinck, , L. B. Bindels, , W. M. de Vos, , G. R. Gibson, , J. P. Thissen, , et al. (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 62, 1112–1121
https://doi.org/10.1136/gutjnl-2012-303304 pmid: 23135760
82 A. Cotillard, , S. P. Kennedy, , L. C. Kong, , E. Prifti, , N. Pons, , E. Le Chatelier, , M. Almeida, , B. Quinquis, , F. Levenez, , N. Galleron, , et al. (2013) Dietary intervention impact on gut microbial gene richness. Nature, 500, 585–588
https://doi.org/10.1038/nature12480 pmid: 23985875
83 C.J. Adler, , K. Dobney, , L.S. Weyrich, , J. Kaidonis, , A.W. Walker, , W. Haak, , C.J. Bradshaw, , G. Townsend, , A. Soltysiak, , K.W. Alt, et al. (2013) Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet, 45, 450–455, 455e451
84 L. A. David, , C. F. Maurice, , R. N. Carmody, , D. B. Gootenberg, , J. E. Button, , B. E. Wolfe, , A. V. Ling, , A. S. Devlin, , Y. Varma, , M. A. Fischbach, , et al. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563
https://doi.org/10.1038/nature12820 pmid: 24336217
85 F. H. Karlsson, , V. Tremaroli, , I. Nookaew, , G. Bergström, , C. J. Behre, , B. Fagerberg, , J. Nielsen, and F. Bäckhed, (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498, 99–103
https://doi.org/10.1038/nature12198 pmid: 23719380
86 M. Rajilić-Stojanović, , E. Biagi, , H. G. Heilig, , K. Kajander, , R. A. Kekkonen, , S. Tims, and W. M. de Vos, (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology, 141, 1792–1801
https://doi.org/10.1053/j.gastro.2011.07.043 pmid: 21820992
87 D. M. Saulnier, , K. Riehle, , T. A. Mistretta, , M. A. Diaz, , D. Mandal, , S. Raza, , E. M. Weidler, , X. Qin, , C. Coarfa, , A. Milosavljevic, , et al. (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology, 141, 1782–1791
https://doi.org/10.1053/j.gastro.2011.06.072 pmid: 21741921
88 D. Gevers, , S. Kugathasan, , L. A. Denson, , Y. Vázquez-Baeza, , W. Van Treuren, , B. Ren, , E. Schwager, , D. Knights, , S. J. Song, , M. Yassour, , et al. (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe, 15, 382–392
https://doi.org/10.1016/j.chom.2014.02.005 pmid: 24629344
89 L. Zhu, , S. S. Baker, , C. Gill, , W. Liu, , R. Alkhouri, , R. D. Baker, and S. R. Gill, (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology, 57, 601–609
https://doi.org/10.1002/hep.26093 pmid: 23055155
90 F. H. Karlsson, , F. Fåk, , I. Nookaew, , V. Tremaroli, , B. Fagerberg, , D. Petranovic, , F. Bäckhed, and J. Nielsen, (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun., 3, 1245
https://doi.org/10.1038/ncomms2266 pmid: 23212374
91 A. D. Kostic, , D. Gevers, , C. S. Pedamallu, , M. Michaud, , F. Duke, , A. M. Earl, , A. I. Ojesina, , J. Jung, , A. J. Bass, , J. Tabernero, , et al. (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res., 22, 292–298
https://doi.org/10.1101/gr.126573.111 pmid: 22009990
92 J. Yu, , Q. Feng, , S. H. Wong, , D. Zhang, , Q. Y. Liang, , Y. Qin, , L. Tang, , H. Zhao, , J. Stenvang, , Y. Li, , et al. (2015) Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut, gutjnl-2015-309800
https://doi.org/10.1136/gutjnl-2015-309800 pmid: 26408641
93 A. V. Tyakht, , E. S. Kostryukova, , A. S. Popenko, , M. S. Belenikin, , A. V. Pavlenko, , A. K. Larin, , I. Y. Karpova, , O. V. Selezneva, , T. A. Semashko, , E. A. Ospanova, , et al. (2013) Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun., 4, 2469
https://doi.org/10.1038/ncomms3469 pmid: 24036685
94 O. Koren, , J. K. Goodrich, , T. C. Cullender, , A. Spor, , K. Laitinen, , H. K. Bäckhed, , A. Gonzalez, , J. J. Werner, , L. T. Angenent, , R. Knight, , et al. (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell, 150, 470–480
https://doi.org/10.1016/j.cell.2012.07.008 pmid: 22863002
95 P. Belda-Ferre, , L. D. Alcaraz, , R. Cabrera-Rubio, , H. Romero, , A. Simón-Soro, , M. Pignatelli, and A. Mira, (2012) The oral metagenome in health and disease. ISME J., 6, 46–56
https://doi.org/10.1038/ismej.2011.85 pmid: 21716308
96 J. Wang, , J. Qi, , H. Zhao, , S. He, , Y. Zhang, , S. Wei, and F. Zhao, (2013) Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci. Rep., 3, 1843
pmid: 23673380
97 A. E. Duran-Pinedo, , T. Chen, , R. Teles, , J. R. Starr, , X. Wang, , K. Krishnan, and J. Frias-Lopez, (2014) Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J., 8, 1659–1672
https://doi.org/10.1038/ismej.2014.23 pmid: 24599074
98 L. Yang, , X. Lu, , C. W. Nossa, , F. Francois, , R. M. Peek, and Z. Pei, (2009) Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology, 137, 588–59
https://doi.org/10.1053/j.gastro.2009.04.046 pmid: 19394334
99 M. M. Tunney, , G. G. Einarsson, , L. Wei, , M. Drain, , E. R. Klem, , C. Cardwell, , M. Ennis, , R. C. Boucher, , M. C. Wolfgang, and J. S. Elborn, (2013) Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am. J. Respir. Crit. Care Med., 187, 1118–1126
https://doi.org/10.1164/rccm.201210-1937OC pmid: 23348972
100 P.R. Marri, , D.A. Stern, , A.L. Wright, , D. Billheimer, and F.D. Martinez, (2013) Asthma-associated differences in microbial composition of induced sputum. J. Allergy. Clin. Immunol., 131, 346–352. e3
101 A. Morris, , J. M. Beck, , P. D. Schloss, , T. B. Campbell, , K. Crothers, , J. L. Curtis, , S. C. Flores, , A. P. Fontenot, , E. Ghedin, , L. Huang, , et al. (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med., 187, 1067–1075
https://doi.org/10.1164/rccm.201210-1913OC pmid: 23491408
102 T. Yatsunenko, , F. E. Rey, , M. J. Manary, , I. Trehan, , M. G. Dominguez-Bello, , M. Contreras, , M. Magris, , G. Hidalgo, , R. N. Baldassano, , A. P. Anokhin, , et al. (2012) Human gut microbiome viewed across age and geography. Nature, 486, 222–227.
pmid: 22699611
103 M. J. Claesson, , I. B. Jeffery, , S. Conde, , S. E. Power, , E. M. O’Connor, , S. Cusack, , H. M. Harris, , M. Coakley, , B. Lakshminarayanan, , O. O’Sullivan, , et al. (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature, 488, 178–184
pmid: 22797518
104 S. S. Stahringer, , J. C. Clemente, , R. P. Corley, , J. Hewitt, , D. Knights, , W. A. Walters, , R. Knight, and K. S. Krauter, (2012) Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res., 22, 2146–2152
https://doi.org/10.1101/gr.140608.112 pmid: 23064750
105 C. A. Lozupone, , J. Stombaugh, , A. Gonzalez, , G. Ackermann, , D. Wendel, , Y. Vázquez-Baeza, , J. K. Jansson, , J. I. Gordon, and R. Knight, (2013) Meta-analyses of studies of the human microbiota. Genome Res., 23, 1704–1714
https://doi.org/10.1101/gr.151803.112 pmid: 23861384
106 S. Lax, , D. P. Smith, , J. Hampton-Marcell, , S. M. Owens, , K. M. Handley, , N. M. Scott, , S. M. Gibbons, , P. Larsen, , B. D. Shogan, , S. Weiss, , et al. (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science, 345, 1048–1052
https://doi.org/10.1126/science.1254529 pmid: 25170151
107 V. Kuleshov, , C. Jiang, , W. Zhou, , F. Jahanbani, , S. Batzoglou, and M. Snyder, (2016) Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Nat. Biotechnol., 34, 64–69
https://doi.org/10.1038/nbt.3416 pmid: 26655498
108 K. Forslund, , F. Hildebrand, , T. Nielsen, , G. Falony, , E. Le Chatelier, , S. Sunagawa, , E. Prifti, , S. Vieira-Silva, , V. Gudmundsdottir, , H. Krogh Pedersen, , et al. (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528, 262–266
https://doi.org/10.1038/nature15766 pmid: 26633628
109 S. Liu, , A. P. da Cunha, , R. M. Rezende, , R. Cialic, , Z. Wei, , L. Bry, , L. E. Comstock, , R. Gandhi, and H. L. Weiner, (2016) The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe., 19, 32–43
https://doi.org/10.1016/j.chom.2015.12.005 pmid: 26764595
110 H. Cui, and X. Zhang, (2013) Alignment-free supervised classification of metagenomes by recursive SVM. BMC Genomics, 14, 641
https://doi.org/10.1186/1471-2164-14-641 pmid: 24053649
111 B. Jiang, , K. Song, , J. Ren, , M. Deng, , F. Sun, and X. Zhang, (2012) Comparison of metagenomic samples using sequence signatures. BMC Genomics, 13, 730
https://doi.org/10.1186/1471-2164-13-730 pmid: 23268604
112 Y. Wang, , L. Liu, , L. Chen, , T. Chen, and F. Sun, (2014) Comparison of metatranscriptomic samples based on k-tuple frequencies. PLoS One, 9, e84348
https://doi.org/10.1371/journal.pone.0084348 pmid: 24392128
113 A. Reyes, , M. Haynes, , N. Hanson, , F. E. Angly, , A. C. Heath, , F. Rohwer, and J. I. Gordon, (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 466, 334–338
https://doi.org/10.1038/nature09199 pmid: 20631792
114 S. K. Kuss, , G. T. Best, , C. A. Etheredge, , A. J. Pruijssers, , J. M. Frierson, , L. V. Hooper, , T. S. Dermody, and J. K. Pfeiffer, (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science, 334, 249–252
https://doi.org/10.1126/science.1211057 pmid: 21998395
115 S. Minot, , R. Sinha, , J. Chen, , H. Li, , S. A. Keilbaugh, , G. D. Wu, , J. D. Lewis, and F. D. Bushman, (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res., 21, 1616–1625
https://doi.org/10.1101/gr.122705.111 pmid: 21880779
116 S. Minot, , A. Bryson, , C. Chehoud, , G. D. Wu, , J. D. Lewis, and F. D. Bushman, (2013) Rapid evolution of the human gut virome. Proc. Natl. Acad. Sci. USA, 110, 12450–12455
https://doi.org/10.1073/pnas.1300833110 pmid: 23836644
117 A. Edlund, , T.M. Santiago-Rodriguez, , T.K. Boehm, and D.T. Pride, (2015) Bacteriophage and their potential roles in the human oral cavity. 2015, 27423
118 J. Wang, , Y. Gao, and F. Zhao, (2015) Phage-bacteria interaction network in human oral microbiome. Environ. Microbiol, 10.1111/1462-2920.12923
pmid: 26036920
119 J. E. Bisanz, and G. Reid, (2011) Unraveling how probiotic yogurt works. Sci. Transl. Med., 3, 106ps41
https://doi.org/10.1126/scitranslmed.3003291 pmid: 22030747
120 F. K. Ghishan, and P. R. Kiela, (2011) From probiotics to therapeutics: another step forward? J. Clin. Invest., 121, 2149–2152
https://doi.org/10.1172/JCI58025 pmid: 21606604
121 T. J. Borody, and A. Khoruts, (2012) Fecal microbiota transplantation and emerging applications. Nat. Rev. Gastroenterol. Hepatol., 9, 88–96
https://doi.org/10.1038/nrgastro.2011.244 pmid: 22183182
122 K. P. Lemon, , G. C. Armitage, , D. A. Relman, and M. A. Fischbach, (2012) Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med., 4, 137rv5
https://doi.org/10.1126/scitranslmed.3004183 pmid: 22674555
123 E. D. Sonnenburg, , S. A. Smits, , M. Tikhonov, , S. K. Higginbottom, , N. S. Wingreen, and J. L. Sonnenburg, (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212–215
https://doi.org/10.1038/nature16504 pmid: 26762459
124 C. Chevalier, , O. Stojanović, , D. J. Colin, , N. Suarez-Zamorano, , V. Tarallo, , C. Veyrat-Durebex, , D. Rigo, , S. Fabbiano, , A. Stevanović, , S. Hagemann, , et al. (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell, 163, 1360–1374
https://doi.org/10.1016/j.cell.2015.11.004 pmid: 26638070
125 X. Zhang, , S. Liu, , H. Cui, and T. Chen, Reading the underlying information from massive metagenome sequencing data. To be published.
126 J. S. Bajaj, , N. S. Betrapally, and P. M. Gillevet, (2015) Decompensated cirrhosis and microbiome interpretation. Nature, 525, E1–E2
https://doi.org/10.1038/nature14851 pmid: 26381988
127 N. Dubilier, , M. McFall-Ngai, and L. Zhao, (2015) Microbiology: Create a global microbiome effort. Nature, 526, 631–634
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed