|
|
|
An overview of major metagenomic studies on human microbiomes in health and disease |
Hongfei Cui1, Yingxue Li1, Xuegong Zhang1,2( ) |
1. MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Center for Synthetic and Systems Biology/Department of Automation, Tsinghua University, Beijing 100084, China 2. School of Life Sciences, Tsinghua University, Beijing 100084, China |
|
|
Abstract: Many microbes are important symbiotes of human. They form specific microbiota communities, participate in various kinds of biological processes of their host and thus deeply affect human health status. Metagenomic sequencing has been widely used in human microbiota study due to its capacity of studying all genetic materials in an environment as a whole without any extra need of isolation or cultivation of microorganisms. Many efforts have been made by researchers in this area trying to dig out interesting knowledge from various metagenome data. In this review, we go through some prominent studies in the metagenomic area. We summarize them into three categories, constructing taxonomy and gene reference, characterization of microbiome distribution patterns, and detection of microbiome alternations associated with specific human phenotypes or diseases. Some available data resources are also provided. This review can serve as an entrance to this exciting and rapidly developing field for researchers interested in human microbiomes. |
Author Summary
Human symbiotic microbes are our important “tiny friends”. They form microbiota communities, participate in multiple types of our biological processes and thus deeply affect our health status. The importance and intricacy of human microbiota studies have attracted extensive attentions. Metagenomic sequencing is one of the most widely used strategies in human microbiota study. Here, we gather the scattered achievements in metagenomic area and comb through their valuable ideas and resources from our perspective. We hope this review can serve as an entrance to this exciting and rapidly developing field for researchers interested in human microbiomes.
|
Key words:
metagenome
human microbiome
taxonomy and gene reference
distribution pattern
microbiome variation
|
收稿日期: 2016-01-30
出版日期: 2016-09-07
|
Corresponding Author(s):
Xuegong Zhang
|
1 |
D. C. Savage, (1977) Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol., 31, 107–133
https://doi.org/10.1146/annurev.mi.31.100177.000543
pmid: 334036
|
2 |
J. O. Lundberg, , E. Weitzberg, , J. A. Cole, and N. Benjamin, (2004) Nitrate, bacteria and human health. Nat. Rev. Microbiol., 2, 593–602
https://doi.org/10.1038/nrmicro929
pmid: 15197394
|
3 |
D. A. Relman, (2011) Microbial genomics and infectious diseases. N. Engl. J. Med., 365, 347–357
https://doi.org/10.1056/NEJMra1003071
pmid: 21793746
|
4 |
N. J. Loman, , C. Constantinidou, , M. Christner, , H. Rohde, , J. Z. Chan, , J. Quick, , J. C. Weir, , C. Quince, , G. P. Smith, , J. R. Betley, , et al. (2013) A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA, 309, 1502–1510
https://doi.org/10.1001/jama.2013.3231
pmid: 23571589
|
5 |
N. Kamada, , G. Y. Chen, , N. Inohara, and G. Núñez, (2013) Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol., 14, 685–690.
https://doi.org/10.1038/ni.2608
pmid: 23778796
|
6 |
R. L. Gallo, and L. V. Hooper, (2012) Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol., 12, 503–516
https://doi.org/10.1038/nri3228
pmid: 22728527
|
7 |
P. D. Schloss, and J. Handelsman, (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol., 6, 229
https://doi.org/10.1186/gb-2005-6-8-229
pmid: 16086859
|
8 |
E. J. van Opstal, and S. R. Bordenstein, (2015) MICROBIOME. Rethinking heritability of the microbiome. Science, 349, 1172–1173
https://doi.org/10.1126/science.aab3958
pmid: 26359393
|
9 |
J. Handelsman, , M. R. Rondon, , S. F. Brady, , J. Clardy, and R. M. Goodman, (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol., 5, R245–R249
https://doi.org/10.1016/S1074-5521(98)90108-9
pmid: 9818143
|
10 |
S. Sunagawa, , L. P. Coelho, , S. Chaffron, , J. R. Kultima, , K. Labadie, , G. Salazar, , B. Djahanschiri, , G. Zeller, , D. R. Mende, , A. Alberti, , et al. (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science, 348, 1261359
https://doi.org/10.1126/science.1261359
pmid: 25999513
|
11 |
D. Debroas, , J. F. Humbert, , F. Enault, , G. Bronner, , M. Faubladier, and E. Cornillot, (2009) Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget—France). Environ. Microbiol., 11, 2412–2424
https://doi.org/10.1111/j.1462-2920.2009.01969.x
pmid: 19558513
|
12 |
M. R. Rondon, , P. R. August, , A. D. Bettermann, , S. F. Brady, , T. H. Grossman, , M. R. Liles, , K. A. Loiacono, , B. A. Lynch, , I. A. MacNeil, , C. Minor, , et al. (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol., 66, 2541–2547
https://doi.org/10.1128/AEM.66.6.2541-2547.2000
pmid: 10831436
|
13 |
G. Cesaroni, , F. Forastiere, , M. Stafoggia, , Z. J. Andersen, , C. Badaloni, , R. Beelen, , B. Caracciolo, , U. de Faire, , R. Erbel, , K. T. Eriksen, , et al. (2014) Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ, 348, f7412
https://doi.org/10.1136/bmj.f7412
pmid: 24452269
|
14 |
A. Walker, (2010) A glut from the gut: metagenomics takes a giant step foward. Nat. Rev. Microbiol., 8, 315
https://doi.org/10.1038/nrmicro2363
pmid: 20395965
|
15 |
P. Lepage, , M. C. Leclerc, , M. Joossens, , S. Mondot, , H. M. Blottière, , J. Raes, , D. Ehrlich, and J. Doré, (2013) A metagenomic insight into our gut’s microbiome. Gut, 62, 146–158.
https://doi.org/10.1136/gutjnl-2011-301805
pmid: 22525886
|
16 |
C. Quast, , E. Pruesse, , P. Yilmaz, , J. Gerken, , T. Schweer, , P. Yarza, , J. Peplies, and F. O. Glöckner, (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res., 41, D590–D596
https://doi.org/10.1093/nar/gks1219
pmid: 23193283
|
17 |
T. Z. DeSantis, , P. Hugenholtz, , N. Larsen, , M. Rojas, , E. L. Brodie, , K. Keller, , T. Huber, , D. Dalevi, , P. Hu, and G. L. Andersen, (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol., 72, 5069–5072
https://doi.org/10.1128/AEM.03006-05
pmid: 16820507
|
18 |
J. R. Cole, , Q. Wang, , J. A. Fish, , B. Chai, , D. M. McGarrell, , Y. Sun, , C. T. Brown, , A. Porras-Alfaro, , C. R. Kuske, and J. M. Tiedje, (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res., 42, D633–D642
https://doi.org/10.1093/nar/gkt1244
pmid: 24288368
|
19 |
NCBI Resource Coordinators. (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 44, D7–D19
https://doi.org/10.1093/nar/gkv1290
pmid: 26615191
|
20 |
V. M. Markowitz, , I. M. Chen, , K. Palaniappan, , K. Chu, , E. Szeto, , M. Pillay, , A. Ratner, , J. Huang, , T. Woyke, , M. Huntemann, , et al. (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res., 42, D560–D567
https://doi.org/10.1093/nar/gkt963
pmid: 24165883
|
21 |
T. Chen, , W. H. Yu, , J. Izard, , O. V. Baranova, , A. Lakshmanan, and F. E. Dewhirst, (2010) The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford), 2010, baq013
https://doi.org/10.1093/database/baq013
pmid: 20624719
|
22 |
H. B. Nielsen, , M. Almeida, , A. S. Juncker, , S. Rasmussen, , J. Li, , S. Sunagawa, , D. R. Plichta, , L. Gautier, , A. G. Pedersen, , E. Le Chatelier, , et al. (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol., 32, 822–828
https://doi.org/10.1038/nbt.2939
pmid: 24997787
|
23 |
M. Kanehisa, , Y. Sato, , M. Kawashima, , M. Furumichi, and M. Tanabe, (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 44, D457–D462
https://doi.org/10.1093/nar/gkv1070
pmid: 26476454
|
24 |
UniProt Consortium. (2015) UniProt: a hub for protein information. Nucleic Acids Res., 43, D204–D212
https://doi.org/10.1093/nar/gku989
pmid: 25348405
|
25 |
C. Huttenhower, , D. Gevers, , R. Knight, , S. Abubucker, , J. H. Badger, , A. T. Chinwalla, , H. H. Creasy, , A. M. Earl, , M. G. FitzGerald, , R. S. Fulton, , et al. (2012) Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214
https://doi.org/10.1038/nature11234
pmid: 22699609
|
26 |
J. Li, , H. Jia, , X. Cai, , H. Zhong, , Q. Feng, , S. Sunagawa, , M. Arumugam, , J. R. Kultima, , E. Prifti, , T. Nielsen, , et al. (2014) An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol., 32, 834–841
https://doi.org/10.1038/nbt.2942
pmid: 24997786
|
27 |
N. Qin, , F. Yang, , A. Li, , E. Prifti, , Y. Chen, , L. Shao, , J. Guo, , E. Le Chatelier, , J. Yao, , L. Wu, , et al. (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature, 513, 59–64
https://doi.org/10.1038/nature13568
pmid: 25079328
|
28 |
J. Oh, , A. L. Byrd, , C. Deming, , S. Conlan, , H. H. Kong, , J. A. Segre, , J. A. Segre, , and the NISC Comparative Sequencing Program. (2014) Biogeography and individuality shape function in the human skin metagenome. Nature, 514, 59–64
https://doi.org/10.1038/nature13786
pmid: 25279917
|
29 |
Q. Feng, , S. Liang, , H. Jia, , A. Stadlmayr, , L. Tang, , Z. Lan, , D. Zhang, , H. Xia, , X. Xu, , Z. Jie, ,et al.(2015) Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun., 6, 6528
https://doi.org/10.1038/ncomms7528
pmid: 25758642
|
30 |
F. Meyer, , D. Paarmann, , M. D’Souza, , R. Olson, , E. M. Glass, , M. Kubal, , T. Paczian, , A. Rodriguez, , R. Stevens, , A. Wilke, , et al. (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9, 386
https://doi.org/10.1186/1471-2105-9-386
pmid: 18803844
|
31 |
S. Hunter, , M. Corbett, , H. Denise, , M. Fraser, , A. Gonzalez-Beltran, , C. Hunter, , P. Jones, , R. Leinonen, , C. McAnulla, , E. Maguire, , et al.(2014) EBI metagenomics—a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res., 42, D600–D606
https://doi.org/10.1093/nar/gkt961
pmid: 24165880
|
32 |
C. R. Woese, (1987) Bacterial evolution. Microbiol. Rev., 51, 221–271
pmid: 2439888
|
33 |
S. F. Stoddard, , B. J. Smith, , R. Hein, , B. R. Roller, and T. M. Schmidt, (2015) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res., 43, D593–D598
https://doi.org/10.1093/nar/gku1201
pmid: 25414355
|
34 |
H. Li, and R. Durbin, (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760
https://doi.org/10.1093/bioinformatics/btp324
pmid: 19451168
|
35 |
B. Langmead, and S. L. Salzberg, (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359
https://doi.org/10.1038/nmeth.1923
pmid: 22388286
|
36 |
R. Li, , C. Yu, , Y. Li, , T. W. Lam, , S. M. Yiu, , K. Kristiansen, and J. Wang, (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967
https://doi.org/10.1093/bioinformatics/btp336
pmid: 19497933
|
37 |
B. A. Methé, , K. E. Nelson, , M. Pop, , H. H. Creasy, , M. G. Giglio, , C. Huttenhower, , D. Gevers, , J. F. Petrosino, , S. Abubucker, , J. H. Badger, , et al. (2012) A framework for human microbiome research. Nature, 486, 215–221
https://doi.org/10.1038/nature11209
pmid: 22699610
|
38 |
J. Qin, , R. Li, , J. Raes, , M. Arumugam, , K. S. Burgdorf, , C. Manichanh, , T. Nielsen, , N. Pons, , F. Levenez, , T. Yamada, , et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65
https://doi.org/10.1038/nature08821
pmid: 20203603
|
39 |
D. E. Wood, and S. L. Salzberg, (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol., 15, R46
https://doi.org/10.1186/gb-2014-15-3-r46
pmid: 24580807
|
40 |
B. Jia, , L. Xuan, , K. Cai, , Z. Hu, , L. Ma, and C. Wei, (2013) NeSSM: a next-generation sequencing simulator for metagenomics. PLoS One, 8, e75448
https://doi.org/10.1371/journal.pone.0075448
pmid: 24124490
|
41 |
J. Qin, , Y. Li, , Z. Cai, , S. Li, , J. Zhu, , F. Zhang, , S. Liang, , W. Zhang, , Y. Guan, , D. Shen, , (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60
https://doi.org/10.1038/nature11450
pmid: 23023125
|
42 |
B. J. Baker, , C. S. Sheik, , C. A. Taylor, , S. Jain, , A. Bhasi, , J. D. Cavalcoli, and G. J. Dick, (2013) Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J., 7, 1962–1973
https://doi.org/10.1038/ismej.2013.85
pmid: 23702516
|
43 |
W. P. Inskeep, , Z. J. Jay, , M. J. Herrgard, , M. A. Kozubal, , D. B. Rusch, , S. G. Tringe, , R. E. Macur, , R. Jennings, , E. S. Boyd, , J. R. Spear, , et al. (2013) Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front. Microbiol., 4, 95
https://doi.org/10.3389/fmicb.2013.00095
pmid: 23720654
|
44 |
N. Segata, , L. Waldron, , A. Ballarini, , V. Narasimhan, , O. Jousson, and C. Huttenhower, (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods, 9, 811–814
https://doi.org/10.1038/nmeth.2066
pmid: 22688413
|
45 |
P. Jagtap, , T. McGowan, , S. Bandhakavi, , Z. J. Tu, , S. Seymour, , T. J. Griffin, and J. D. Rudney, (2012) Deep metaproteomic analysis of human salivary supernatant. Proteomics, 12, 992–1001
https://doi.org/10.1002/pmic.201100503
pmid: 22522805
|
46 |
B. Liu, , L. L. Faller, , N. Klitgord, , V. Mazumdar, , M. Ghodsi, , D. D. Sommer, , T. R. Gibbons, , T. J. Treangen, , Y. C. Chang, , S. Li, , et al. (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One, 7, e37919
https://doi.org/10.1371/journal.pone.0037919
pmid: 22675498
|
47 |
C. Warinner, , J. F. Rodrigues, , R. Vyas, , C. Trachsel, , N. Shved, , J. Grossmann, , A. Radini, , Y. Hancock, , R. Y. Tito, , S. Fiddyment, , et al. (2014) Pathogens and host immunity in the ancient human oral cavity. Nat. Genet., 46, 336–344
https://doi.org/10.1038/ng.2906
pmid: 24562188
|
48 |
R. Luo, , B. Liu, , Y. Xie, , Z. Li, , W. Huang, , J. Yuan, , G. He, , Y. Chen, , Q. Pan, , Y. Liu, , et al. (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 1, 18
https://doi.org/10.1186/2047-217X-1-18
pmid: 23587118
|
49 |
T. Namiki, , T. Hachiya, , H. Tanaka, and Y. Sakakibara, (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res., 40, e155
https://doi.org/10.1093/nar/gks678
pmid: 22821567
|
50 |
Y. Peng, , H. C. Leung, , S. M. Yiu, and F. Y. Chin, (2011) Meta-IDBA: a de novo assembler for metagenomic data. Bioinformatics, 27, i94–i101
https://doi.org/10.1093/bioinformatics/btr216
pmid: 21685107
|
51 |
W. Zhu, , A. Lomsadze, and M. Borodovsky, (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res., 38, e132
https://doi.org/10.1093/nar/gkq275
pmid: 20403810
|
52 |
A. L. Delcher, , D. Harmon, , S. Kasif, , O. White, and S. L. Salzberg, (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res., 27, 4636–4641
https://doi.org/10.1093/nar/27.23.4636
pmid: 10556321
|
53 |
L. Fu, , B. Niu, , Z. Zhu, , S. Wu, and W. Li, (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28, 3150–3152
https://doi.org/10.1093/bioinformatics/bts565
pmid: 23060610
|
54 |
R. C. Edgar, (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461
https://doi.org/10.1093/bioinformatics/btq461
pmid: 20709691
|
55 |
E. Le Chatelier, , T. Nielsen, , J. Qin, , E. Prifti, , F. Hildebrand, , G. Falony, , M. Almeida, , M. Arumugam, , J. M. Batto, , S. Kennedy, , et al. (2013) Richness of human gut microbiome correlates with metabolic markers. Nature, 500, 541–546
https://doi.org/10.1038/nature12506
pmid: 23985870
|
56 |
R. L. Tatusov, , E. V. Koonin, and D. J. Lipman, (1997) A genomic perspective on protein families. Science, 278, 631–637
https://doi.org/10.1126/science.278.5338.631
pmid: 9381173
|
57 |
R. Overbeek, , T. Begley, , R. M. Butler, , J. V. Choudhuri, , H. Y. Chuang, , M. Cohoon, , V. de Crécy-Lagard, , N. Diaz, , T. Disz, , R. Edwards, , et al. (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res., 33, 5691–5702
https://doi.org/10.1093/nar/gki866
pmid: 16214803
|
58 |
R. D. Finn, , P. Coggill, , R. Y. Eberhardt, , S. R. Eddy, , J. Mistry, , A. L. Mitchell, , S. C. Potter, , M. Punta, , M. Qureshi, , A. Sangrador-Vegas, , et al. (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res., 44, D279–D285
https://doi.org/10.1093/nar/gkv1344
pmid: 26673716
|
59 |
J. D. Selengut, , D. H. Haft, , T. Davidsen, , A. Ganapathy, , M. Gwinn-Giglio, , W. C. Nelson, , A. R. Richter, and O. White, (2007) TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res., 35, D260–D264
https://doi.org/10.1093/nar/gkl1043
pmid: 17151080
|
60 |
D. H. Huson, , A. F. Auch, , J. Qi, and S. C. Schuster, (2007) MEGAN analysis of metagenomic data. Genome Res., 17, 377–386
https://doi.org/10.1101/gr.5969107
pmid: 17255551
|
61 |
X. Zhou, , C. J. Brown, , Z. Abdo, , C. C. Davis, , M. A. Hansmann, , P. Joyce, , J. A. Foster, and L. J. Forney, (2007) Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J., 1, 121–133
https://doi.org/10.1038/ismej.2007.12
pmid: 18043622
|
62 |
R. M. Brotman, , L. L. Bradford, , M. Conrad, , P. Gajer, , K. Ault, , L. Peralta, , L. J. Forney, , J. M. Carlton, , Z. Abdo, and J. Ravel, (2012) Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women. Sex. Transm. Dis., 39, 807–812
https://doi.org/10.1097/OLQ.0b013e3182631c79
pmid: 23007708
|
63 |
R. M. Brotman, , M. D. Shardell, , P. Gajer, , D. Fadrosh, , K. Chang, , M. I. Silver, , R. P. Viscidi, , A. E. Burke, , J. Ravel, and P. E. Gravitt, (2014) Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause, 21, 450–458
https://doi.org/10.1097/GME.0b013e3182a4690b
pmid: 24080849
|
64 |
J. Ravel, , P. Gajer, , L. Fu, , C. K. Mauck, , S. S. Koenig, , J. Sakamoto, , A. A. Motsinger-Reif, , G. F. Doncel, and S. L. Zeichner, (2012) Twice-daily application of HIV microbicides alter the vaginal microbiota. MBio, 3, e00370-12
https://doi.org/10.1128/mBio.00370-12
pmid: 23249810
|
65 |
S. D. Mehta, , B. Donovan, , K. M. Weber, , M. Cohen, , J. Ravel, , P. Gajer, , D. Gilbert, , D. Burgad, and G. T. Spear, (2015) The vaginal microbiota over an 8- to 10-year period in a cohort of HIV-infected and HIV-uninfected women. PLoS One, 10, e0116894
https://doi.org/10.1371/journal.pone.0116894
pmid: 25675346
|
66 |
R. Romero, , S. S. Hassan, , P. Gajer, , A. L. Tarca, , D. W. Fadrosh, , L. Nikita, , M. Galuppi, , R. F. Lamont, , P. Chaemsaithong, , J. Miranda, , et al. (2014) The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome, 2, 4
https://doi.org/10.1186/2049-2618-2-4
pmid: 24484853
|
67 |
D. B. DiGiulio, , B. J. Callahan, , P. J. McMurdie, , E. K. Costello, , D. J. Lyell, , A. Robaczewska, , C. L. Sun, , D. S. Goltsman, , R. J. Wong, , G. Shaw, , et al. (2015) Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA, 112, 11060–11065
https://doi.org/10.1073/pnas.1502875112
pmid: 26283357
|
68 |
Y. E. Huang, , Y. Wang, , Y. He, , Y. Ji, , L. P. Wang, , H. F. Sheng, , M. Zhang, , Q. T. Huang, , D. J. Zhang, , J. J. Wu, , et al. (2015) Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Microb. Ecol., 69, 407–414
https://doi.org/10.1007/s00248-014-0487-1
pmid: 25230887
|
69 |
M. Arumugam, , J. Raes, , E. Pelletier, , D. Le Paslier, , T. Yamada, , D. R. Mende, , G. R. Fernandes, , J. Tap, , T. Bruls, , J. M. Batto, , et al.(2011) Enterotypes of the human gut microbiome. Nature, 473, 174–180
https://doi.org/10.1038/nature09944
pmid: 21508958
|
70 |
G. D. Wu, , J. Chen, , C. Hoffmann, , K. Bittinger, , Y. Y. Chen, , S. A. Keilbaugh, , M. Bewtra, , D. Knights, , W. A. Walters, , R. Knight, , et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105–108
https://doi.org/10.1126/science.1208344
pmid: 21885731
|
71 |
A. H. Moeller, , P. H. Degnan, , A. E. Pusey, , M. L. Wilson, , B. H. Hahn, and H. Ochman, (2012) Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat. Commun., 3, 1179
https://doi.org/10.1038/ncomms2159
pmid: 23149725
|
72 |
I. B. Jeffery, , M. J. Claesson, , P. W. O’Toole, and F. Shanahan, (2012) Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol., 10, 591–592
https://doi.org/10.1038/nrmicro2859
pmid: 23066529
|
73 |
D. Knights, , T. L. Ward, , C. E. McKinlay, , H. Miller, , A. Gonzalez, , D. McDonald, and R. Knight, (2014) Rethinking “enterotypes”. Cell Host Microbe, 16, 433–437
https://doi.org/10.1016/j.chom.2014.09.013
pmid: 25299329
|
74 |
T. Ding, and P. D. Schloss, (2014) Dynamics and associations of microbial community types across the human body. Nature, 509, 357–360
https://doi.org/10.1038/nature13178
pmid: 24739969
|
75 |
E. A. Franzosa, , K. Huang, , J. F. Meadow, , D. Gevers, , K. P. Lemon, , B. J. Bohannan, and C. Huttenhower, (2015) Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA, 112, E2930–E2938
https://doi.org/10.1073/pnas.1423854112
pmid: 25964341
|
76 |
I. Sharon, , M. J. Morowitz, , B. C. Thomas, , E. K. Costello, , D. A. Relman, and J. F. Banfield, (2013) Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res., 23, 111–120
https://doi.org/10.1101/gr.142315.112
pmid: 22936250
|
77 |
J. J. Faith, , J. L. Guruge, , M. Charbonneau, , S. Subramanian, , H. Seedorf, , A. L. Goodman, , J. C. Clemente, , R. Knight, , A. C. Heath, , R. L. Leibel, , et al. (2013) The long-term stability of the human gut microbiota. Science, 341, 1237439
https://doi.org/10.1126/science.1237439
pmid: 23828941
|
78 |
C. A. Lozupone, , J. I. Stombaugh, , J. I. Gordon, , J. K. Jansson, and R. Knight, (2012) Diversity, stability and resilience of the human gut microbiota. Nature, 489, 220–230
https://doi.org/10.1038/nature11550
pmid: 22972295
|
79 |
L. A. David, , A. C. Materna, , J. Friedman, , M. I. Campos-Baptista, , M. C. Blackburn, , A. Perrotta, , S. E. Erdman, and E. J. Alm, (2014) Host lifestyle affects human microbiota on daily timescales. Genome Biol., 15, R89
https://doi.org/10.1186/gb-2014-15-7-r89
pmid: 25146375
|
80 |
M. I. Smith, , T. Yatsunenko, , M. J. Manary, , I. Trehan, , R. Mkakosya, , J. Cheng, , A. L. Kau, , S. S. Rich, , P. Concannon, , J. C. Mychaleckyj, ,et al. (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science, 339, 548–554
https://doi.org/10.1126/science.1229000
pmid: 23363771
|
81 |
E. M. Dewulf, , P. D. Cani, , S. P. Claus, , S. Fuentes, , P. G. Puylaert, , A. M. Neyrinck, , L. B. Bindels, , W. M. de Vos, , G. R. Gibson, , J. P. Thissen, , et al. (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 62, 1112–1121
https://doi.org/10.1136/gutjnl-2012-303304
pmid: 23135760
|
82 |
A. Cotillard, , S. P. Kennedy, , L. C. Kong, , E. Prifti, , N. Pons, , E. Le Chatelier, , M. Almeida, , B. Quinquis, , F. Levenez, , N. Galleron, , et al. (2013) Dietary intervention impact on gut microbial gene richness. Nature, 500, 585–588
https://doi.org/10.1038/nature12480
pmid: 23985875
|
83 |
C.J. Adler, , K. Dobney, , L.S. Weyrich, , J. Kaidonis, , A.W. Walker, , W. Haak, , C.J. Bradshaw, , G. Townsend, , A. Soltysiak, , K.W. Alt, et al. (2013) Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet, 45, 450–455, 455e451
|
84 |
L. A. David, , C. F. Maurice, , R. N. Carmody, , D. B. Gootenberg, , J. E. Button, , B. E. Wolfe, , A. V. Ling, , A. S. Devlin, , Y. Varma, , M. A. Fischbach, , et al. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563
https://doi.org/10.1038/nature12820
pmid: 24336217
|
85 |
F. H. Karlsson, , V. Tremaroli, , I. Nookaew, , G. Bergström, , C. J. Behre, , B. Fagerberg, , J. Nielsen, and F. Bäckhed, (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498, 99–103
https://doi.org/10.1038/nature12198
pmid: 23719380
|
86 |
M. Rajilić-Stojanović, , E. Biagi, , H. G. Heilig, , K. Kajander, , R. A. Kekkonen, , S. Tims, and W. M. de Vos, (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology, 141, 1792–1801
https://doi.org/10.1053/j.gastro.2011.07.043
pmid: 21820992
|
87 |
D. M. Saulnier, , K. Riehle, , T. A. Mistretta, , M. A. Diaz, , D. Mandal, , S. Raza, , E. M. Weidler, , X. Qin, , C. Coarfa, , A. Milosavljevic, , et al. (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology, 141, 1782–1791
https://doi.org/10.1053/j.gastro.2011.06.072
pmid: 21741921
|
88 |
D. Gevers, , S. Kugathasan, , L. A. Denson, , Y. Vázquez-Baeza, , W. Van Treuren, , B. Ren, , E. Schwager, , D. Knights, , S. J. Song, , M. Yassour, , et al. (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe, 15, 382–392
https://doi.org/10.1016/j.chom.2014.02.005
pmid: 24629344
|
89 |
L. Zhu, , S. S. Baker, , C. Gill, , W. Liu, , R. Alkhouri, , R. D. Baker, and S. R. Gill, (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology, 57, 601–609
https://doi.org/10.1002/hep.26093
pmid: 23055155
|
90 |
F. H. Karlsson, , F. Fåk, , I. Nookaew, , V. Tremaroli, , B. Fagerberg, , D. Petranovic, , F. Bäckhed, and J. Nielsen, (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun., 3, 1245
https://doi.org/10.1038/ncomms2266
pmid: 23212374
|
91 |
A. D. Kostic, , D. Gevers, , C. S. Pedamallu, , M. Michaud, , F. Duke, , A. M. Earl, , A. I. Ojesina, , J. Jung, , A. J. Bass, , J. Tabernero, , et al. (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res., 22, 292–298
https://doi.org/10.1101/gr.126573.111
pmid: 22009990
|
92 |
J. Yu, , Q. Feng, , S. H. Wong, , D. Zhang, , Q. Y. Liang, , Y. Qin, , L. Tang, , H. Zhao, , J. Stenvang, , Y. Li, , et al. (2015) Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut, gutjnl-2015-309800
https://doi.org/10.1136/gutjnl-2015-309800
pmid: 26408641
|
93 |
A. V. Tyakht, , E. S. Kostryukova, , A. S. Popenko, , M. S. Belenikin, , A. V. Pavlenko, , A. K. Larin, , I. Y. Karpova, , O. V. Selezneva, , T. A. Semashko, , E. A. Ospanova, , et al. (2013) Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun., 4, 2469
https://doi.org/10.1038/ncomms3469
pmid: 24036685
|
94 |
O. Koren, , J. K. Goodrich, , T. C. Cullender, , A. Spor, , K. Laitinen, , H. K. Bäckhed, , A. Gonzalez, , J. J. Werner, , L. T. Angenent, , R. Knight, , et al. (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell, 150, 470–480
https://doi.org/10.1016/j.cell.2012.07.008
pmid: 22863002
|
95 |
P. Belda-Ferre, , L. D. Alcaraz, , R. Cabrera-Rubio, , H. Romero, , A. Simón-Soro, , M. Pignatelli, and A. Mira, (2012) The oral metagenome in health and disease. ISME J., 6, 46–56
https://doi.org/10.1038/ismej.2011.85
pmid: 21716308
|
96 |
J. Wang, , J. Qi, , H. Zhao, , S. He, , Y. Zhang, , S. Wei, and F. Zhao, (2013) Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci. Rep., 3, 1843
pmid: 23673380
|
97 |
A. E. Duran-Pinedo, , T. Chen, , R. Teles, , J. R. Starr, , X. Wang, , K. Krishnan, and J. Frias-Lopez, (2014) Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J., 8, 1659–1672
https://doi.org/10.1038/ismej.2014.23
pmid: 24599074
|
98 |
L. Yang, , X. Lu, , C. W. Nossa, , F. Francois, , R. M. Peek, and Z. Pei, (2009) Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology, 137, 588–59
https://doi.org/10.1053/j.gastro.2009.04.046
pmid: 19394334
|
99 |
M. M. Tunney, , G. G. Einarsson, , L. Wei, , M. Drain, , E. R. Klem, , C. Cardwell, , M. Ennis, , R. C. Boucher, , M. C. Wolfgang, and J. S. Elborn, (2013) Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am. J. Respir. Crit. Care Med., 187, 1118–1126
https://doi.org/10.1164/rccm.201210-1937OC
pmid: 23348972
|
100 |
P.R. Marri, , D.A. Stern, , A.L. Wright, , D. Billheimer, and F.D. Martinez, (2013) Asthma-associated differences in microbial composition of induced sputum. J. Allergy. Clin. Immunol., 131, 346–352. e3
|
101 |
A. Morris, , J. M. Beck, , P. D. Schloss, , T. B. Campbell, , K. Crothers, , J. L. Curtis, , S. C. Flores, , A. P. Fontenot, , E. Ghedin, , L. Huang, , et al. (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med., 187, 1067–1075
https://doi.org/10.1164/rccm.201210-1913OC
pmid: 23491408
|
102 |
T. Yatsunenko, , F. E. Rey, , M. J. Manary, , I. Trehan, , M. G. Dominguez-Bello, , M. Contreras, , M. Magris, , G. Hidalgo, , R. N. Baldassano, , A. P. Anokhin, , et al. (2012) Human gut microbiome viewed across age and geography. Nature, 486, 222–227.
pmid: 22699611
|
103 |
M. J. Claesson, , I. B. Jeffery, , S. Conde, , S. E. Power, , E. M. O’Connor, , S. Cusack, , H. M. Harris, , M. Coakley, , B. Lakshminarayanan, , O. O’Sullivan, , et al. (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature, 488, 178–184
pmid: 22797518
|
104 |
S. S. Stahringer, , J. C. Clemente, , R. P. Corley, , J. Hewitt, , D. Knights, , W. A. Walters, , R. Knight, and K. S. Krauter, (2012) Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res., 22, 2146–2152
https://doi.org/10.1101/gr.140608.112
pmid: 23064750
|
105 |
C. A. Lozupone, , J. Stombaugh, , A. Gonzalez, , G. Ackermann, , D. Wendel, , Y. Vázquez-Baeza, , J. K. Jansson, , J. I. Gordon, and R. Knight, (2013) Meta-analyses of studies of the human microbiota. Genome Res., 23, 1704–1714
https://doi.org/10.1101/gr.151803.112
pmid: 23861384
|
106 |
S. Lax, , D. P. Smith, , J. Hampton-Marcell, , S. M. Owens, , K. M. Handley, , N. M. Scott, , S. M. Gibbons, , P. Larsen, , B. D. Shogan, , S. Weiss, , et al. (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science, 345, 1048–1052
https://doi.org/10.1126/science.1254529
pmid: 25170151
|
107 |
V. Kuleshov, , C. Jiang, , W. Zhou, , F. Jahanbani, , S. Batzoglou, and M. Snyder, (2016) Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Nat. Biotechnol., 34, 64–69
https://doi.org/10.1038/nbt.3416
pmid: 26655498
|
108 |
K. Forslund, , F. Hildebrand, , T. Nielsen, , G. Falony, , E. Le Chatelier, , S. Sunagawa, , E. Prifti, , S. Vieira-Silva, , V. Gudmundsdottir, , H. Krogh Pedersen, , et al. (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528, 262–266
https://doi.org/10.1038/nature15766
pmid: 26633628
|
109 |
S. Liu, , A. P. da Cunha, , R. M. Rezende, , R. Cialic, , Z. Wei, , L. Bry, , L. E. Comstock, , R. Gandhi, and H. L. Weiner, (2016) The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe., 19, 32–43
https://doi.org/10.1016/j.chom.2015.12.005
pmid: 26764595
|
110 |
H. Cui, and X. Zhang, (2013) Alignment-free supervised classification of metagenomes by recursive SVM. BMC Genomics, 14, 641
https://doi.org/10.1186/1471-2164-14-641
pmid: 24053649
|
111 |
B. Jiang, , K. Song, , J. Ren, , M. Deng, , F. Sun, and X. Zhang, (2012) Comparison of metagenomic samples using sequence signatures. BMC Genomics, 13, 730
https://doi.org/10.1186/1471-2164-13-730
pmid: 23268604
|
112 |
Y. Wang, , L. Liu, , L. Chen, , T. Chen, and F. Sun, (2014) Comparison of metatranscriptomic samples based on k-tuple frequencies. PLoS One, 9, e84348
https://doi.org/10.1371/journal.pone.0084348
pmid: 24392128
|
113 |
A. Reyes, , M. Haynes, , N. Hanson, , F. E. Angly, , A. C. Heath, , F. Rohwer, and J. I. Gordon, (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 466, 334–338
https://doi.org/10.1038/nature09199
pmid: 20631792
|
114 |
S. K. Kuss, , G. T. Best, , C. A. Etheredge, , A. J. Pruijssers, , J. M. Frierson, , L. V. Hooper, , T. S. Dermody, and J. K. Pfeiffer, (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science, 334, 249–252
https://doi.org/10.1126/science.1211057
pmid: 21998395
|
115 |
S. Minot, , R. Sinha, , J. Chen, , H. Li, , S. A. Keilbaugh, , G. D. Wu, , J. D. Lewis, and F. D. Bushman, (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res., 21, 1616–1625
https://doi.org/10.1101/gr.122705.111
pmid: 21880779
|
116 |
S. Minot, , A. Bryson, , C. Chehoud, , G. D. Wu, , J. D. Lewis, and F. D. Bushman, (2013) Rapid evolution of the human gut virome. Proc. Natl. Acad. Sci. USA, 110, 12450–12455
https://doi.org/10.1073/pnas.1300833110
pmid: 23836644
|
117 |
A. Edlund, , T.M. Santiago-Rodriguez, , T.K. Boehm, and D.T. Pride, (2015) Bacteriophage and their potential roles in the human oral cavity. 2015, 27423
|
118 |
J. Wang, , Y. Gao, and F. Zhao, (2015) Phage-bacteria interaction network in human oral microbiome. Environ. Microbiol, 10.1111/1462-2920.12923
pmid: 26036920
|
119 |
J. E. Bisanz, and G. Reid, (2011) Unraveling how probiotic yogurt works. Sci. Transl. Med., 3, 106ps41
https://doi.org/10.1126/scitranslmed.3003291
pmid: 22030747
|
120 |
F. K. Ghishan, and P. R. Kiela, (2011) From probiotics to therapeutics: another step forward? J. Clin. Invest., 121, 2149–2152
https://doi.org/10.1172/JCI58025
pmid: 21606604
|
121 |
T. J. Borody, and A. Khoruts, (2012) Fecal microbiota transplantation and emerging applications. Nat. Rev. Gastroenterol. Hepatol., 9, 88–96
https://doi.org/10.1038/nrgastro.2011.244
pmid: 22183182
|
122 |
K. P. Lemon, , G. C. Armitage, , D. A. Relman, and M. A. Fischbach, (2012) Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med., 4, 137rv5
https://doi.org/10.1126/scitranslmed.3004183
pmid: 22674555
|
123 |
E. D. Sonnenburg, , S. A. Smits, , M. Tikhonov, , S. K. Higginbottom, , N. S. Wingreen, and J. L. Sonnenburg, (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212–215
https://doi.org/10.1038/nature16504
pmid: 26762459
|
124 |
C. Chevalier, , O. Stojanović, , D. J. Colin, , N. Suarez-Zamorano, , V. Tarallo, , C. Veyrat-Durebex, , D. Rigo, , S. Fabbiano, , A. Stevanović, , S. Hagemann, , et al. (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell, 163, 1360–1374
https://doi.org/10.1016/j.cell.2015.11.004
pmid: 26638070
|
125 |
X. Zhang, , S. Liu, , H. Cui, and T. Chen, Reading the underlying information from massive metagenome sequencing data. To be published.
|
126 |
J. S. Bajaj, , N. S. Betrapally, and P. M. Gillevet, (2015) Decompensated cirrhosis and microbiome interpretation. Nature, 525, E1–E2
https://doi.org/10.1038/nature14851
pmid: 26381988
|
127 |
N. Dubilier, , M. McFall-Ngai, and L. Zhao, (2015) Microbiology: Create a global microbiome effort. Nature, 526, 631–634
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|