|
|
|
Quantum conformational transition in biological macromolecule |
Liaofu Luo1( ), Jun Lv2( ) |
1. School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China 2. Center for Physics Experiment, College of Science, Inner Mongolia University of Technology, Hohhot 010051, China |
|
|
Abstract: Background: Recently we proposed a quantum theory on the conformational change of biomolecule, deduced several equations on protein folding rate from the first principles and discussed the experimental tests of the theory. The article is a review of these works. Methods: Based on the general equation of the conformation-transitional rate several theoretical results are deduced and compared with experimental data through bioinformatics methods. Results: The temperature dependence and the denaturant concentration dependence of the protein folding rate are deduced and compared with experimental data. The quantitative relation between protein folding rate and torsional mode number (or chain length) is deduced and the obtained formula can be applied to RNA folding as well. The quantum transition theory of two-state protein is successfully generalized to multi-state protein folding. Then, how to make direct experimental tests on the quantum property of the conformational transition of biomolecule is discussed, which includes the study of protein photo-folding and the observation of the fluctuation of the fluorescence intensity emitted from the protein folding/unfolding event. Finally, the potential applications of the present quantum folding theory to molecular biological problems are sketched in two examples: the glucose transport across membrane and the induced pluripotency in stem cell. Conclusions: The above results show that the quantum mechanics provides a unifying and logically simple theoretical starting point in studying the conformational change of biological macromolecules. The far-reaching results in practical application of the theory are expected. |
Author Summary Quantum theory on the conformational change of biomolecule is reviewed. The protein folding is looked as a quantum transition between torsion states of the chain of amino acids. It means that the protein could “jump” from one shape to another without necessarily forming the shapes in between. The review emphasizes the checking of the new theory against experimental data. All comparisons (including on the non-Arrhenius temperature dependence of the folding rate) show that the quantum mechanism does exist in the conformational transition of biomolecules and the quantum mechanics provides a unifying and logically simple starting point for studying these problems. |
Key words:
conformational change
quantum transition
protein folding
RNA folding
temperature dependence
|
收稿日期: 2016-07-01
出版日期: 2017-06-07
|
Corresponding Author(s):
Liaofu Luo,Jun Lv
|
66 |
Stagg, L., Samiotakis, A., Homouz, D. , Cheung, M. S. and Wittung-Stafshede, P. (2010) Residue-specific analysis of frustration in the folding landscape of repeat beta/alpha protein apoflavodoxin. J. Mol. Biol., 396, 75–89
https://doi.org/10.1016/j.jmb.2009.11.008
pmid: 19913555
|
67 |
Ratcliff, K., Corn, J. and Marqusee, S. (2009) Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Biochemistry, 48, 5890–5898
https://doi.org/10.1021/bi900305p
pmid: 19408959
|
68 |
Luo, L. (2012) Protein photo-folding and quantum folding theory. Sci. China Life Sci., 55, 533–541
https://doi.org/10.1007/s11427-012-4316-9
pmid: 22744184
|
69 |
Fang, C., Frontiera, R. R., Tran, R. , Mathies, R. A. and Mathies, R. A. (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature, 462, 200–204
https://doi.org/10.1038/nature08527
pmid: 19907490
|
70 |
Zurek, W. H. (2002) Decoherence and the transition from quantum to classical – Revisited. In Quantum Decoherence. 16–31. Birkhäuser Basel, Doi:10.1007/978-3-7643-7808-0_1.
|
75 |
Tegmark, M. (2000) Importance of quantum decoherence in brain processes. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 61, 4194–4206
https://doi.org/10.1103/PhysRevE.61.4194
pmid: 11088215
|
71 |
Deng, D., Xu, C., Sun, P. , Wu, J., Yan, C., Hu, M. and Yan, N. (2014) Crystal structure of the human glucose transporter GLUT1. Nature, 510, 121–125
https://doi.org/10.1038/nature13306
pmid: 24847886
|
1 |
Luo, L. F. (2014) Quantum theory on protein folding. Sci. China Phys. Mech. Astron., 57, 458–468
https://doi.org/10.1007/s11433-014-5390-8
|
72 |
Luo, L. F. (2014) Quantum theory on glucose transport across membrane. arXiv: 1407.7198 at .
|
73 |
Hou, P., Li, Y., Zhang, X. , Liu, C. , Guan, J. , Li, H., Zhao, T., Ye, J. , Yang, W. , Liu, K. , et al. (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654
https://doi.org/10.1126/science.1239278
pmid: 23868920
|
74 |
Luo, L. F. (2015) From chemically to physically induced pluripotency in stem cell. arXiv: 1506.02053 at .
|
2 |
Luo, L. F. (2011) Protein Folding as a quantum transition between conformational states. Front. Phys., 6, 133–140
https://doi.org/10.1007/s11467-010-0153-0
|
3 |
Lv, J. and Luo, L. (2014) Statistical analyses of protein folding rates from the view of quantum transition. Sci. China Life Sci., 57, 1197–1212
https://doi.org/10.1007/s11427-014-4728-9
pmid: 25266151
|
4 |
Luo, L. F. and Lv, J. (2015)Quantitative relations in protein and RNA folding deduced from quantum theory. bioRxiv:
|
5 |
Luo, L. F. (2015) A model on avian genome evolution. bioRxiv: ; arXiv: 1411.2205,
|
6 |
Hameroff, S. and Penrose, R. (2014) Consciousness in the universe: a review of the ‘Orch OR’ theory. Phys. Life Rev., 11, 39–78
https://doi.org/10.1016/j.plrev.2013.08.002
pmid: 24070914
|
7 |
Fisher, M. P. A. (2015) Quantum cognition: The possibility of processing with nuclear spins in the brain. Ann. Phys., 362, 593–602
https://doi.org/10.1016/j.aop.2015.08.020
|
8 |
Melkikh, A. V. (2014) Congenital programs of the behavior and nontrivial quantum effects in the neurons work. Biosystems, 119, 10–19
https://doi.org/10.1016/j.biosystems.2014.03.005
pmid: 24704210
|
9 |
Gauger, E. M. , Rieper, E. , Morton, J. J. L. , Benjamin, S. C. and Vedral, V. (2011) Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett., 106, 040503
https://doi.org/10.1103/PhysRevLett.106.040503
pmid: 21405313
|
10 |
Eyring, H., Lin, S. H. and Lin, M. (1980) Basic Chemical Kinetics. New York: Wiley
|
11 |
Maxwell, K. L. , Wildes, D. , Zarrine-Afsar, A. , De Los Rios, M. A. , Brown, A. G. , Friel, C. T. , Hedberg, L. , Horng, J. C. , Bona, D. , Miller, E. J. , et al. (2005) Protein folding: defining a “standard” set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci., 14, 602–616
https://doi.org/10.1110/ps.041205405
pmid: 15689503
|
12 |
Nguyen, H., Jager, M., Moretto, A. , Gruebele, M. and Kelly, J. W. (2003) Tuning the free-energy landscape of a WW domain by temperature, mutation, and truncation. Proc. Natl. Acad. Sci. USA, 100, 3948–3953
https://doi.org/10.1073/pnas.0538054100
pmid: 12651955
|
13 |
Ghosh, K., Ozkan, S. B. and Dill, K. A. (2007) The ultimate speed limit to protein folding is conformational searching. J. Am. Chem. Soc., 129, 11920–11927
https://doi.org/10.1021/ja066785b
pmid: 17824609
|
14 |
Dimitriadis, G., Drysdale, A., Myers, J. K. , Arora, P. , Radford, S. E. , Oas, T. G. and Smith, D. A. (2004) Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump. Proc. Natl. Acad. Sci. USA, 101, 3809–3814
https://doi.org/10.1073/pnas.0306433101
pmid: 15007169
|
15 |
Kuhlman, B., Luisi, D. L., Evans, P. A. and Raleigh, D. P. (1998) Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9. J. Mol. Biol., 284, 1661–1670
https://doi.org/10.1006/jmbi.1998.2246
pmid: 9878377
|
16 |
Mayor, U., Johnson, C. M., Daggett, V. and Fersht, A. R. (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. USA, 97, 13518–13522
https://doi.org/10.1073/pnas.250473497
pmid: 11087839
|
17 |
Manyusa, S. and Whitford, D. (1999) Defining folding and unfolding reactions of apocytochrome b5 using equilibrium and kinetic fluorescence measurements. Biochemistry, 38, 9533–9540
https://doi.org/10.1021/bi990550d
pmid: 10413531
|
18 |
Bunagan, M. R. , Yang, X. , Saven, J. G. and Gai, F. (2006) Ultrafast folding of a computationally designed Trp-cage mutant: Trp2-cage. J. Phys. Chem. B, 110, 3759–3763
https://doi.org/10.1021/jp055288z
pmid: 16494434
|
19 |
Qiu, L., Pabit, S. A., Roitberg, A. E. and Hagen, S. J. (2002) Smaller and faster: the 20-residue Trp-cage protein folds in 4 micros. J. Am. Chem. Soc., 124, 12952–12953
https://doi.org/10.1021/ja0279141
pmid: 12405814
|
20 |
Yang, W. Y. and Gruebele, M. (2004) Rate-temperature relationships in l-repressor fragment l 6-85 folding. Biochemistry, 43, 13018–13025
https://doi.org/10.1021/bi049113b
pmid: 15476395
|
21 |
Jäger, M., Nguyen, H., Crane, J. C. , Kelly, J. W. and Gruebele, M. (2001) The folding mechanism of a beta-sheet: the WW domain. J. Mol. Biol., 311, 373–393
https://doi.org/10.1006/jmbi.2001.4873
pmid: 11478867
|
22 |
Wang, T., Zhu, Y. J. and Gai, F. (2004) Folding of a three-helix bundle at the folding speed limit. J. Phys. Chem. B, 108, 3694–3697
https://doi.org/10.1021/jp049652q
|
23 |
Zhu, Y., Alonso, D. O., Maki, K. , Huang, C. Y. , Lahr, S. J. , Daggett, V. , Roder, H. , DeGrado, W. F. and Gai, F. (2003) Ultrafast folding of α3D: a de novo designed three-helix bundle protein. Proc. Natl. Acad. Sci. USA, 100, 15486–15491
https://doi.org/10.1073/pnas.2136623100
pmid: 14671331
|
24 |
Spector, S. and Raleigh, D. P. (1999) Submillisecond folding of the peripheral subunit-binding domain. J. Mol. Biol., 293, 763–768
https://doi.org/10.1006/jmbi.1999.3189
pmid: 10543965
|
25 |
Uversky, V. N. (2013) Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta, 1834, 932–951
https://doi.org/10.1016/j.bbapap.2012.12.008
pmid: 23269364
|
26 |
Bonetti, D., Toto, A., Giri, R. , Morrone, A. , Sanfelice, D. , Pastore, A. , Temussi, P. , Gianni, S. and Brunori, M. (2014) The kinetics of folding of frataxin. Phys. Chem. Chem. Phys., 16, 6391–6397
https://doi.org/10.1039/c3cp54055c
pmid: 24429875
|
27 |
Garbuzynskiy, S. O. , Ivankov, D. N. , Bogatyreva, N. S. and Finkelstein, A. V. (2013) Golden triangle for folding rates of globular proteins. Proc. Natl. Acad. Sci. USA, 110, 147–150
https://doi.org/10.1073/pnas.1210180110
pmid: 23251035
|
28 |
Thirumalai, D. and Hyeon, C. (2005) RNA and protein folding: common themes and variations. Biochemistry, 44, 4957–4970
https://doi.org/10.1021/bi047314+
pmid: 15794634
|
29 |
Woodson, S. A. (2010) Compact intermediates in RNA folding. Annu. Rev. Biophys., 39, 61–77
https://doi.org/10.1146/annurev.biophys.093008.131334
pmid: 20192764
|
30 |
Hyeon, C. and Thirumalai, D. (2012) Chain length determines the folding rates of RNA. Biophys. J., 102, L11–L13
https://doi.org/10.1016/j.bpj.2012.01.003
pmid: 22325296
|
31 |
Kamagata, K., Arai, M. and Kuwajima, K. (2004) Unification of the folding mechanisms of non-two-state and two-state proteins. J. Mol. Biol., 339, 951–965
https://doi.org/10.1016/j.jmb.2004.04.015
pmid: 15165862
|
32 |
Zhang, Y. and Luo, L. (2011) The dynamical contact order: protein folding rate parameters based on quantum conformational transitions. Sci. China Life Sci., 54, 386–392
https://doi.org/10.1007/s11427-011-4158-x
pmid: 21509661
|
33 |
Cavagnero, S., Dyson, H. J. and Wright, P. E. (1999) Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin. J. Mol. Biol., 285, 269–282
https://doi.org/10.1006/jmbi.1998.2273
pmid: 9878405
|
34 |
Golbik, R., Zahn, R., Harding, S. E. and Fersht, A. R. (1998) Thermodynamic stability and folding of GroEL minichaperones. J. Mol. Biol., 276, 505–515
https://doi.org/10.1006/jmbi.1997.1538
pmid: 9512719
|
35 |
Banachewicz, W., Johnson, C. M. and Fersht, A. R. (2011) Folding of the Pit1 homeodomain near the speed limit. Proc. Natl. Acad. Sci. USA, 108, 569–573
https://doi.org/10.1073/pnas.1017832108
pmid: 21187427
|
36 |
Marianayagam, N. J. , Khan, F. , Male, L. and Jackson, S. E. (2002) Fast folding of a four-helical bundle protein. J. Am. Chem. Soc., 124, 9744–9750
https://doi.org/10.1021/ja016480r
pmid: 12175232
|
37 |
Löw, C., Weininger, U., Zeeb, M. , Zhang, W. , Laue, E. D. , Schmid, F. X. and Balbach, J. (2007) Folding mechanism of an ankyrin repeat protein: scaffold and active site formation of human CDK inhibitor p19(INK4d). J. Mol. Biol., 373, 219–231
https://doi.org/10.1016/j.jmb.2007.07.063
pmid: 17804013
|
38 |
Calosci, N., Chi, C. N., Richter, B. , Camilloni, C. , Engström, A. , Eklund, L. , Travaglini-Allocatelli, C. , Gianni, S. , Vendruscolo, M. and Jemth, P. (2008) Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins. Proc. Natl. Acad. Sci. USA, 105, 19241–19246
https://doi.org/10.1073/pnas.0804774105
pmid: 19033470
|
39 |
Schreiber, G. and Fersht, A. R. (1993) The refolding of cis- and trans-peptidylprolyl isomers of barstar. Biochemistry, 32, 11195–11203
https://doi.org/10.1021/bi00092a032
pmid: 8218183
|
40 |
Burns, L. L., Dalessio, P. M. and Ropson, I. J. (1998) Folding mechanism of three structurally similar beta-sheet proteins. Proteins, 33, 107–118
https://doi.org/10.1002/(SICI)1097-0134(19981001)33:1<107::AID-PROT10>3.0.CO;2-P
pmid: 9741849
|
41 |
Dalessio, P. M. and Ropson, I. J. (2000) Beta-sheet proteins with nearly identical structures have different folding intermediates. Biochemistry, 39, 860–871
https://doi.org/10.1021/bi991937j
pmid: 10653629
|
42 |
Gianni, S., Guydosh, N. R., Khan, F. , Caldas, T. D. , Mayor, U. , White, G. W. , DeMarco, M. L. , Daggett, V. and Fersht, A. R. (2003) Unifying features in protein-folding mechanisms. Proc. Natl. Acad. Sci. USA, 100, 13286–13291
https://doi.org/10.1073/pnas.1835776100
pmid: 14595026
|
43 |
Gianni, S., Calosci, N., Aelen, J. M. , Vuister, G. W. , Brunori, M. and Travaglini-Allocatelli, C. (2005) Kinetic folding mechanism of PDZ2 from PTP-BL. Protein Eng. Des. Sel., 18, 389–395
https://doi.org/10.1093/protein/gzi047
pmid: 16043447
|
44 |
Calloni, G., Taddei, N., Plaxco, K. W. , Ramponi, G. , Stefani, M. and Chiti, F. (2003) Comparison of the folding processes of distantly related proteins. Importance of hydrophobic content in folding. J. Mol. Biol., 330, 577–591
https://doi.org/10.1016/S0022-2836(03)00627-2
pmid: 12842473
|
45 |
Liu, C., Gaspar, J. A., Wong, H. J. and Meiering, E. M. (2002) Conserved and nonconserved features of the folding pathway of hisactophilin, a beta-trefoil protein. Protein Sci., 11, 669–679
https://doi.org/10.1110/ps.31702
pmid: 11847289
|
46 |
Parker, M. J. , Dempsey, C. E. , Lorch, M. and Clarke, A. R. (1997) Acquisition of native beta-strand topology during the rapid collapse phase of protein folding. Biochemistry, 36, 13396–13405
https://doi.org/10.1021/bi971294c
pmid: 9341233
|
47 |
Forsyth, W. R. and Matthews, C. R. (2002) Folding mechanism of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus: a test of the conservation of folding mechanisms hypothesis in (beta(alpha))(8) barrels. J. Mol. Biol., 320, 1119–1133
https://doi.org/10.1016/S0022-2836(02)00557-0
pmid: 12126630
|
48 |
Maki, K., Cheng, H., Dolgikh, D. A. , Shastry, M. C. and Roder, H. (2004) Early events during folding of wild-type staphylococcal nuclease and a single-tryptophan variant studied by ultrarapid mixing. J. Mol. Biol., 338, 383–400
https://doi.org/10.1016/j.jmb.2004.02.044
pmid: 15066439
|
49 |
Parker, M. J. , Spencer, J. , Jackson, G. S. , Burston, S. G. , Hosszu, L. L. , Craven, C. J. , Waltho, J. P. and Clarke, A. R. (1996) Domain behavior during the folding of a thermostable phosphoglycerate kinase. Biochemistry, 35, 15740–15752
https://doi.org/10.1021/bi961330s
pmid: 8961937
|
50 |
Parker, M. J. , Spencer, J. and Clarke, A. R. (1995) An integrated kinetic analysis of intermediates and transition states in protein folding reactions. J. Mol. Biol., 253, 771–786
https://doi.org/10.1006/jmbi.1995.0590
pmid: 7473751
|
51 |
Ogasahara, K. and Yutani, K. (1994) Unfolding-refolding kinetics of the tryptophan synthase alpha subunit by CD and fluorescence measurements. J. Mol. Biol., 236, 1227–1240
https://doi.org/10.1016/0022-2836(94)90023-X
pmid: 8120898
|
52 |
Jennings, P. A. , Finn, B. E. , Jones, B. E. and Matthews, C. R. (1993) A reexamination of the folding mechanism of dihydrofolate reductase from Escherichia coli: verification and refinement of a four-channel model. Biochemistry, 32, 3783–3789
https://doi.org/10.1021/bi00065a034
pmid: 8466916
|
53 |
Matouschek, A., Kellis, J. T. Jr, Serrano, L., Bycroft, M. and Fersht, A. R. (1990) Transient folding intermediates characterized by protein engineering. Nature, 346, 440–445
https://doi.org/10.1038/346440a0
pmid: 2377205
|
54 |
Schymkowitz, J. W. , Rousseau, F. , Irvine, L. R. and Itzhaki, L. S. (2000) The folding pathway of the cell-cycle regulatory protein p13suc1: clues for the mechanism of domain swapping. Structure, 8, 89–100
https://doi.org/10.1016/S0969-2126(00)00084-8
pmid: 10673431
|
55 |
Teilum, K., Thormann, T., Caterer, N. R. , Poulsen, H. I. , Jensen, P. H. , Knudsen, J. , Kragelund, B. B. and Poulsen, F. M. (2005) Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles. Proteins, 59, 80–90
https://doi.org/10.1002/prot.20340
pmid: 15690348
|
56 |
Fowler, S. B. and Clarke, J. (2001) Mapping the folding pathway of an immunoglobulin domain: structural detail from Phi value analysis and movement of the transition state. Structure, 9, 355–366
https://doi.org/10.1016/S0969-2126(01)00596-2
pmid: 11377196
|
57 |
Cota, E. and Clarke, J. (2000) Folding of beta-sandwich proteins: three-state transition of a fibronectin type III module. Protein Sci., 9, 112–120
https://doi.org/10.1110/ps.9.1.112
pmid: 10739253
|
58 |
Jemth, P., Day, R., Gianni, S. , Khan, F. , Allen, M. , Daggett, V. and Fersht, A. R. (2005) The structure of the major transition state for folding of an FF domain from experiment and simulation. J. Mol. Biol., 350, 363–378
https://doi.org/10.1016/j.jmb.2005.04.067
pmid: 15935381
|
59 |
Melnik, B. S. , Marchenkov, V. V. , Evdokimov, S. R. , Samatova, E. N. and Kotova, N. V. (2008) Multy-state protein: determination of carbonic anhydrase free-energy landscape. Biochem. Biophys. Res. Commun., 369, 701–706
https://doi.org/10.1016/j.bbrc.2008.02.096
pmid: 18313396
|
60 |
Tang, K. S., Guralnick, B. J., Wang, W. K. , Fersht, A. R. and Itzhaki, L. S. (1999) Stability and folding of the tumour suppressor protein p16. J. Mol. Biol., 285, 1869–1886
https://doi.org/10.1006/jmbi.1998.2420
pmid: 9917418
|
61 |
Laurents, D. V. , Corrales, S. , Elías-Arnanz, M. , Sevilla, P. , Rico, M. and Padmanabhan, S. (2000) Folding kinetics of phage 434 Cro protein. Biochemistry, 39, 13963–13973
https://doi.org/10.1021/bi001388d
pmid: 11076539
|
62 |
Parker, M. J. and Marqusee, S. (1999) The cooperativity of burst phase reactions explored. J. Mol. Biol., 293, 1195–1210
https://doi.org/10.1006/jmbi.1999.3204
pmid: 10547295
|
63 |
Lowe, A. R. and Itzhaki, L. S. (2007) Rational redesign of the folding pathway of a modular protein. Proc. Natl. Acad. Sci. USA, 104, 2679–2684
https://doi.org/10.1073/pnas.0604653104
pmid: 17299057
|
64 |
Choe, S. E., Matsudaira, P. T., Osterhout, J. , Wagner, G. and Shakhnovich, E. I. (1998) Folding kinetics of villin 14T, a protein domain with a central beta-sheet and two hydrophobic cores. Biochemistry, 37, 14508–14518
https://doi.org/10.1021/bi980889k
pmid: 9772179
|
65 |
Muñoz, V., Lopez, E. M., Jager, M. and Serrano, L. (1994) Kinetic characterization of the chemotactic protein from Escherichia coli, CheY. kinetic analysis of the inverse hydrophobic effect. Biochemistry, 33, 5858–5866
https://doi.org/10.1021/bi00185a025
pmid: 8180214
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|