Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2017, Vol. 5 Issue (1): 99-104   https://doi.org/10.1007/s40484-017-0098-1
  本期目录
SynBioEcoli: a comprehensive metabolism network of engineered E. coli in three dimensional visualization
Weizhong Tu2, Shaozhen Ding1, Ling Wu1, Zhe Deng3, Hui Zhu3, Xiaotong Xu4, Chen Lin4, Chaonan Ye3, Minlu Han3, Mengna Zhao3, Juan Liu4, Zixin Deng3, Junni Chen2, Dong-Qing Wei5, Qian-Nan Hu1()
1. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
2. Wuhan LifeSynther Cooperation Limited, Wuhan 430078, China
3. Ministry of Education, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
4. State Key Laboratory of Software Engineering and School of Computer Sciences, Wuhan University , Wuhan 430072, China
5. State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(2018 KB)   HTML
Abstract

Background: A comprehensive metabolism network of engineered E. coli is very important in systems biology and metabolomics studies. Many tools focus on two-dimensional space to display pathways in metabolic network. However, the usage of three-dimensional visualization may help to understand better the intricate topology of metabolic and regulatory networks.

Methods: We manually curated large amount of experimental data (including pathways, reactions and metabolites) from literature related with different types of engineered E. coli and then utilized a novel technology of three dimensional visualization to develop a comprehensive metabolic network named SynBioEcoli.

Results: SynBioEoli contains 740 biosynthetic pathways, 3,889 metabolic reactions, 2,255 chemical compoundsmanually curated from about 11,000 metabolism publications related with different types of engineered E. coli. Furthermore, SynBioEcoli integrates with various informatics techniques.

Conclusions: SynBioEcoli could be regarded as a comprehensive knowledgebase of engineered E. coli and represents the next generation cellular metabolism network visualization technology. It could be accessed via web browsers (such as Google Chrome) supporting WebGL, at http://www.rxnfinder.org/synbioecoli/.

Author Summary  A comprehensive metabolism network of engineered E. coli is very important in systems biology and metabolomics studies. The usage of three-dimensional visualization may help to understand better metabolic and regulatory networks than many tools which focus on two-dimensional space. Based on the large amount of experimental data manually curated from publications related with different types of engineered E. coli and novel technology of three dimensional visualization, SynBioEcoli was developed, which also integrates with various informatics techniques. It could be regarded as a comprehensive knowledgebase of engineered E. coli and represents the next generation cellular metabolism network visualization technology.
Key wordsengineered E. coli    three dimensional metabolic network    biosynthetic ability
收稿日期: 2016-09-09      出版日期: 2017-03-22
Corresponding Author(s): Qian-Nan Hu   
 引用本文:   
. [J]. Quantitative Biology, 2017, 5(1): 99-104.
Weizhong Tu, Shaozhen Ding, Ling Wu, Zhe Deng, Hui Zhu, Xiaotong Xu, Chen Lin, Chaonan Ye, Minlu Han, Mengna Zhao, Juan Liu, Zixin Deng, Junni Chen, Dong-Qing Wei, Qian-Nan Hu. SynBioEcoli: a comprehensive metabolism network of engineered E. coli in three dimensional visualization. Quant. Biol., 2017, 5(1): 99-104.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-017-0098-1
https://academic.hep.com.cn/qb/CN/Y2017/V5/I1/99
Fig.1  
Fig.2  
Fig.3  
PRM data,data information involved pathways, reactions as well as metabolites
GEM,genome-scale metabolism
  
1 D. McCloskey, , B. O. Palsson, and A. M. Feist, (2013) Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol., 9, 661–676
https://doi.org/10.1038/msb.2013.18
2 A. M. Feist, , C. S. Henry, , J. L. Reed, , M. Krummenacker, , A. R. Joyce, , P. D. Karp, , L. J. Broadbelt, , V. Hatzimanikatis, and B. O. Palsson, (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol., 3, 121–139
https://doi.org/10.1038/msb4100155
3 A. M. Feist, , M. J. Herrgard, , I. Thiele, , J. L. Reed, and B. O. Palsson, (2009) Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol., 7, 129–143
https://doi.org/10.1038/nrmicro1949
4 A. M. Feist, and B. O. Palsson, (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol., 26, 659–667
https://doi.org/10.1038/nbt1401
5 H. Jeong, , B. Tombor, , R. Albert, , Z. N. Oltvai, and A. L. Barabási, (2000) The large-scale organization of metabolic networks. Nature, 407, 651–654
https://doi.org/10.1038/35036627
6 H. Ma, and A. P. Zeng, (2003) Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics, 19, 270–277
https://doi.org/10.1093/bioinformatics/19.2.270
7 S. Okuda, , T. Yamada, , M. Hamajima, , M. Itoh, , T. Katayama, , P. Bork, , S. Goto, and M. Kanehisa, (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res., 36, W423–W426
https://doi.org/10.1093/nar/gkn282
8 P. D. Karp, , S. M. Paley, , M. Krummenacker, , M. Latendresse, , J. M. Dale, , T. J. Lee, , P. Kaipa, , F. Gilham, , A. Spaulding, , L. Popescu, , et al. (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief. Bioinform., 11, 40–79
https://doi.org/10.1093/bib/bbp043
9 P. Csermely, , T. Korcsmaros, , H. J. Kiss, , G. London, and R. Nussinov, (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery. Pharmacol. Ther., 138, 333–408
https://doi.org/10.1016/j.pharmthera.2013.01.016
10 I. Rojdestvenski, and M. Cottam, (2002) Visualizing metabolic networks in VRML. In Proceedings. Sixth International Conference on Information Visualisation, pp. 175–180
11 G. A. Pavlopoulos, , S. I. O’Donoghue, , V. P. Satagopam, , T. G. Soldatos, , E. Pafilis, and R. Schneider, (2008) Arena3D: visualization of biological networks in 3D. BMC Syst. Biol., 2, 104–111
https://doi.org/10.1186/1752-0509-2-104
12 M. Jia, , S. Y. Choi, , D. Reiners, , E. S. Wurtele, and J. A. Dickerson, (2010) MetNetGE: interactive views of biological networks and ontologies. BMC Bioinformatics, 11, 469–485
https://doi.org/10.1186/1471-2105-11-469
13 P. D. Karp, and M. Riley, (1996) EcoCyc: an encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res., 24, 32–39
https://doi.org/10.1093/nar/24.1.32
14 M. Kanehisa, , S. Goto, , Y. Sato, , M. Kawashima, , M. Furumichi, and M. Tanabe, (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205
https://doi.org/10.1093/nar/gkt1076
15 A. Chang, , I. Schomburg, , S. Placzek, , L. Jeske, , M. Ulbrich, , M. Xiao, , C. W. Sensen, and D. Schomburg, (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res., 43, D439–D446
https://doi.org/10.1093/nar/gku1068
16 M. Lang, , M. Stelzer, and D. Schomburg, (2011) BKM-react, an integrated biochemical reaction database. BMC Biochem., 12, 42
https://doi.org/10.1186/1471-2091-12-42
17 T. M. J. Fruchterman, and E. M. Reingold, (1991) Graph drawing by force-directed placement. Softw. Pract. Exper., 21, 1129–1164
https://doi.org/10.1002/spe.4380211102
18 Q. N. Hu, , Z. Deng, , W. Tu, , X. Yang, , Z. B. Meng, , Z. X. Deng, and J. Liu, (2014) VNP: interactive visual network pharmacology of diseases, targets, and drugs. CPT Pharmacometrics Syst. Pharmacol., 3, e105
https://doi.org/10.1038/psp.2014.1
19 W. Tu, , H. Zhang, , J. Liu, and Q. -N. Hu, (2015) BioSynther: a customized biosynthetic potential explorer. Bioinformatics, 32, 472–473
https://doi.org/10.1093/bioinformatics/btv599
20 Q. N. Hu, , Z. Deng, , H. Hu, , D. S. Cao, and Y. Z. Liang, (2011) RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity. Bioinformatics, 27, 2465–2467
https://doi.org/10.1093/bioinformatics/btr413
21 T. F. Smith, and M. S. Waterman, (1981) Identification of common molecular subsequences. J. Mol. Biol., 147, 195–197
https://doi.org/10.1016/0022-2836(81)90087-5
22 D. J. Lipman, and W. R. Pearson, (1985) Rapid and sensitive protein similarity searches. Science, 227, 1435–1441.
https://doi.org/10.1126/science.2983426
23 W. R. Pearson, and D. J. Lipman, (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA, 85, 2444–2448
https://doi.org/10.1073/pnas.85.8.2444
24 B. Danchilla, (2012) Three.js Framework. In Beginning WebGL for HTML5, 173–203. Berkeley: Apress
https://doi.org/10.1007/978-1-4302-3997-0_7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed