|
|
|
Geometric and amino acid type determinants for protein-protein interaction interfaces |
Yongxiao Yang1, Wei Wang2, Yuan Lou1, Jianxin Yin2, Xinqi Gong1( ) |
1. Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China 2. School of Statistics, Renmin University of China, Beijing 100872, China |
|
|
Abstract: Background: Protein-protein interactions are essential to many biological processes. The binding site information of protein-protein complexes is extremely useful to obtain their structures from biochemical experiments. Geometric description of protein structures is the precondition of protein binding site prediction and protein-protein interaction analysis. The previous description of protein surface residues is incomplete, and little attention are paid to the implication of residue types for binding site prediction. Methods: Here, we found three new geometric features to characterize protein surface residues which are very effective for protein-protein interface residue prediction. The new features and several commonly used descriptors were employed to train millions of residue type-nonspecific or specific protein binding site predictors. Results: The amino acid type-specific predictors are superior to the models without distinction of amino acid types. The performances of the best predictors are much better than those of the sophisticated methods developed before. Conclusions: The results demonstrate that the geometric properties and amino acid types are very likely to determine if a protein surface residue would become an interface one when the protein binds to its partner. |
Key words:
protein-protein interaction
protein-protein complex interface
geometry feature
residue type
binding site
|
收稿日期: 2017-09-11
出版日期: 2018-06-11
|
Corresponding Author(s):
Xinqi Gong
|
1 |
Gao, M. and Skolnick, J. (2010) Structural space of protein-protein interfaces is degenerate, close to complete, and highly connected. Proc. Natl. Acad. Sci. USA, 107, 22517–22522
https://doi.org/10.1073/pnas.1012820107
pmid: 21149688
|
2 |
Chothia, C. and Janin, J. (1975) Principles of protein-protein recognition. Nature, 256, 705–708
https://doi.org/10.1038/256705a0
pmid: 1153006
|
3 |
Jones, S. and Thornton, J. M. (1996) Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA, 93, 13–20
https://doi.org/10.1073/pnas.93.1.13
pmid: 8552589
|
4 |
Keskin, O., Gursoy, A., Ma, B. and Nussinov, R. (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem. Rev., 108, 1225–1244
https://doi.org/10.1021/cr040409x
pmid: 18355092
|
5 |
Koshland, D. E. (1995) The key-lock theroy and the induced fit theroy. Angew. Chem. Int. Ed., 33, 2375–2378
https://doi.org/10.1002/anie.199423751
|
6 |
Teichmann, S. A. (2002) Principles of protein-protein interactions. Bioinformatics, 18, S249
https://doi.org/10.1093/bioinformatics/18.suppl_2.S249
pmid: 12386009
|
7 |
Zhang, Q. C., Petrey, D., Norel, R. and Honig, B. H. (2010) Protein interface conservation across structure space. Proc. Natl. Acad. Sci. USA, 107, 10896–10901
https://doi.org/10.1073/pnas.1005894107
pmid: 20534496
|
8 |
Aumentado-Armstrong, T. T., Istrate, B. and Murgita, R. A. (2015) Algorithmic approaches to protein-protein interaction site prediction. Algorithms Mol. Biol., 10, 7
https://doi.org/10.1186/s13015-015-0033-9
pmid: 25713596
|
9 |
Esmaielbeiki, R., Krawczyk, K., Knapp, B., Nebel, J. C. and Deane, C. M. (2016) Progress and challenges in predicting protein interfaces. Brief. Bioinformatics, 17, 117–131
pmid: 25971595
|
10 |
Maheshwari, S. and Brylinski, M. (2015) Predicting protein interface residues using easily accessible on-line resources. Brief. Bioinform., 16, 1025–1034
https://doi.org/10.1093/bib/bbv009
pmid: 25797794
|
11 |
Xue, L. C., Dobbs, D., Bonvin, A. M. and Honavar, V. (2015) Computational prediction of protein interfaces: a review of data driven methods. FEBS Lett., 589, 3516–3526
https://doi.org/10.1016/j.febslet.2015.10.003
pmid: 26460190
|
12 |
Pintar, A., Carugo, O. and Pongor, S. (2002) CX, an algorithm that identifies protruding atoms in proteins. Bioinformatics, 18, 980–984
https://doi.org/10.1093/bioinformatics/18.7.980
pmid: 12117796
|
13 |
de Moraes, F. R., Neshich, I. A., Mazoni, I., Yano, I. H., Pereira, J. G., Salim, J. A., Jardine, J. G. and Neshich, G. (2014) Improving predictions of protein-protein interfaces by combining amino acid-specific classifiers based on structural and physicochemical descriptors with their weighted neighbor averages. PLoS One, 9, e87107
https://doi.org/10.1371/journal.pone.0087107
pmid: 24489849
|
14 |
Qin, S. and Zhou, H. X. (2007) meta-PPISP: a meta web server for protein-protein interaction site prediction. Bioinformatics, 23, 3386–3387
https://doi.org/10.1093/bioinformatics/btm434
pmid: 17895276
|
15 |
Segura, J., Jones, P. F. and Fernandez-Fuentes, N. (2011) Improving the prediction of protein binding sites by combining heterogeneous data and Voronoi diagrams. BMC Bioinformatics, 12, 352
https://doi.org/10.1186/1471-2105-12-352
pmid: 21861881
|
16 |
Zhang, Q. C., Deng, L., Fisher, M., Guan, J., Honig, B. and Petrey, D. (2011) PredUs: a web server for predicting protein interfaces using structural neighbors. Nucleic Acids Res., 39, W283–W287
https://doi.org/10.1093/nar/gkr311
pmid: 21609948
|
17 |
Wang, L., Wang, Y. and Chang, Q. (2016) Feature selection methods for big data bioinformatics: a survey from the search perspective. Methods, 111, 21–31
https://doi.org/10.1016/j.ymeth.2016.08.014
pmid: 27592382
|
18 |
Vreven, T., Moal, I. H., Vangone, A., Pierce, B. G., Kastritis, P. L., Torchala, M., Chaleil, R., Jimenez-Garcia, B., Bates, P. A., Fernandez-Recio, J., Bonvin, A. M. and Weng, Z. (2015) Updates to the integrated protein-protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2. J. Mol. Biol. 427, 3031–3041
https://doi.org/https://www.sciencedirect.com/science/article/pii/S0022283615004180
|
19 |
Hwang, H., Vreven, T., Janin, J. and Weng, Z. (2010) Protein-protein docking benchmark version 4.0. Proteins, 78, 3111–3114
https://doi.org/10.1002/prot.22830
pmid: 20806234
|
20 |
Hwang, H., Pierce, B., Mintseris, J., Janin, J. and Weng, Z. (2008) Protein-protein docking benchmark version 3.0. Proteins, 73, 705–709
https://doi.org/10.1002/prot.22106
pmid: 18491384
|
21 |
Hubbard, S.J. and Thornton, M. (1993) Naccess Version 2.1.1. Department of Biochemistry and Molecular Biology, University College, London
|
22 |
Fischer, T. B., Holmes, J. B., Miller, I. R., Parsons, J. R., Tung, L., Hu, J. C. and Tsai, J. (2006) Assessing methods for identifying pair-wise atomic contacts across binding interfaces. J. Struct. Biol., 153, 103–112
https://doi.org/10.1016/j.jsb.2005.11.005
pmid: 16377205
|
23 |
Eisenberg, D. (1984) Three-dimensional structure of membrane and surface proteins. Annu. Rev. Biochem., 53, 595–623
https://doi.org/10.1146/annurev.bi.53.070184.003115
pmid: 6383201
|
24 |
Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 157, 105–132
https://doi.org/10.1016/0022-2836(82)90515-0
pmid: 7108955
|
25 |
Olsson, M. H., Søndergaard, C. R., Rostkowski, M. and Jensen, J. H. (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput., 7, 525–537
https://doi.org/10.1021/ct100578z
pmid: 26596171
|
26 |
Møller, M. F. (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw., 6, 525–533
https://doi.org/10.1016/S0893-6080(05)80056-5
|
27 |
Kishore, R. and Kaur, M. T. (2012) Backpropagation algorithm: an artificial neural network approach for pattern recognition. Inter. J. Sci. & Engin.Res ., 3, 1–4
|
28 |
Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) Learning representations by back-propagating errors. Nature, 323, 533–536
https://doi.org/10.1038/323533a0
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|