Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2018, Vol. 6 Issue (4): 287-306   https://doi.org/10.1007/s40484-018-0150-9
  本期目录
Experimental design and model reduction in systems biology
Jenny E. Jeong1, Qinwei Zhuang2, Mark K. Transtrum3, Enlu Zhou4, Peng Qiu5()
1. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
2. School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
3. Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA
4. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
5. Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA; Emory University, Atlanta, GA 30322, USA
 全文: PDF(1923 KB)   HTML
Abstract

Background: In systems biology, the dynamics of biological networks are often modeled with ordinary differential equations (ODEs) that encode interacting components in the systems, resulting in highly complex models. In contrast, the amount of experimentally available data is almost always limited, and insufficient to constrain the parameters. In this situation, parameter estimation is a very challenging problem. To address this challenge, two intuitive approaches are to perform experimental design to generate more data, and to perform model reduction to simplify the model. Experimental design and model reduction have been traditionally viewed as two distinct areas, and an extensive literature and excellent reviews exist on each of the two areas. Intriguingly, however, the intrinsic connections between the two areas have not been recognized.

Results: Experimental design and model reduction are deeply related, and can be considered as one unified framework. There are two recent methods that can tackle both areas, one based on model manifold and the other based on profile likelihood. We use a simple sum-of-two-exponentials example to discuss the concepts and algorithmic details of both methods, and provide Matlab-based code and implementation which are useful resources for the dissemination and adoption of experimental design and model reduction in the biology community.

Conclusions: From a geometric perspective, we consider the experimental data as a point in a high-dimensional data space and the mathematical model as a manifold living in this space. Parameter estimation can be viewed as a projection of the data point onto the manifold. By examining the singularity around the projected point on the manifold, we can perform both experimental design and model reduction. Experimental design identifies new experiments that expand the manifold and remove the singularity, whereas model reduction identifies the nearest boundary, which is the nearest singularity that suggests an appropriate form of a reduced model. This geometric interpretation represents one step toward the convergence of experimental design and model reduction as a unified framework.

Key wordsexperimental design    model reduction    model manifold    profile likelihood
收稿日期: 2018-01-22      出版日期: 2018-12-10
Corresponding Author(s): Peng Qiu   
 引用本文:   
. [J]. Quantitative Biology, 2018, 6(4): 287-306.
Jenny E. Jeong, Qinwei Zhuang, Mark K. Transtrum, Enlu Zhou, Peng Qiu. Experimental design and model reduction in systems biology. Quant. Biol., 2018, 6(4): 287-306.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-018-0150-9
https://academic.hep.com.cn/qb/CN/Y2018/V6/I4/287
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 A. D. Lander, (2004) A calculus of purpose. PLoS Biol., 2, e164
https://doi.org/10.1371/journal.pbio.0020164. pmid: 15208717
2 E. A. Sobie, , Y. S. Lee, , S. L. Jenkins, and R. Iyengar, (2011) Systems biology‒biomedical modeling. Sci. Signal., 4, tr2
https://doi.org/10.1126/scisignal.2001989. pmid: 21917716
3 F. Fages, , S. Gay, and S. Soliman, (2015) Inferring reaction systems from ordinary differential equations. Theor. Comput. Sci., 599, 64–78
https://doi.org/10.1016/j.tcs.2014.07.032.
4 S. K. Jha, and C. J. Langmead, (2012) Exploring behaviors of stochastic differential equation models of biological systems using change of measures. BMC Bioinformatics, 13, S8
https://doi.org/10.1186/1471-2105-13-S5-S8. pmid: 22537012
5 S. A. Kauffman, (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 22, 437–467
https://doi.org/10.1016/0022-5193(69)90015-0. pmid: 5803332
6 K. Sachs, , D. Gifford, , T. Jaakkola, , P. Sorger, and D. A. Lauffenburger, (2002) Bayesian network approach to cell signaling pathway modeling. Sci. STKE, 2002, pe38
pmid: 12209052.
7 I. Koch, (2015) Petri nets in systems biology. Soft. Syst. Model., 14, 703–710
https://doi.org/10.1007/s10270-014-0421-5.
8 W. Materi, and D. S. Wishart, (2007) Computational systems biology in drug discovery and development: methods and applications. Drug Discov. Today, 12, 295–303
https://doi.org/10.1016/j.drudis.2007.02.013. pmid: 17395089
9 D. Machado, , R. S. Costa, , M. Rocha, , E. C. Ferreira, , B. Tidor, and I. Rocha, (2011) Modeling formalisms in systems biology. AMB Express, 1, 45
https://doi.org/10.1186/2191-0855-1-45. pmid: 22141422
10 E. Bartocci, and P. Lió, (2016) Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol., 12, e1004591
https://doi.org/10.1371/journal.pcbi.1004591. pmid: 26795950
11 H. Kitano, (2002) Computational systems biology. Nature, 420, 206–210
https://doi.org/10.1038/nature01254. pmid: 12432404
12 B. B. Aldridge, , J. M. Burke, , D. A. Lauffenburger, and P. K. Sorger, (2006) Physicochemical modelling of cell signalling pathways. Nat. Cell Biol., 8, 1195–1203
https://doi.org/10.1038/ncb1497. pmid: 17060902
13 J. Anderson, , Y. C. Chang, and A. Papachristodoulou, (2011) Model decomposition and reduction tools for large-scale networks in systems biology. Automatica, 47, 1165–1174
https://doi.org/10.1016/j.automatica.2011.03.010.
14 T. Quaiser, , A. Dittrich, , F. Schaper, and M. Mönnigmann, (2011) A simple work flow for biologically inspired model reduction--application to early JAK-STAT signaling. BMC Syst. Biol., 5, 30
https://doi.org/10.1186/1752-0509-5-30. pmid: 21338487
15 A. F. Villaverde, , D. Henriques, , K. Smallbone, , S. Bongard, , J. Schmid, , D. Cicin-Sain, , A. Crombach, , J. Saez-Rodriguez, , K. Mauch, , E. Balsa-Canto, , et al.et al. (2015) BioPreDyn-bench: a suite of benchmark problems for dynamic modelling in systems biology. BMC Syst. Biol., 9, 8
https://doi.org/10.1186/s12918-015-0144-4. pmid: 25880925
16 B. B. Machta, , R. Chachra, , M. K. Transtrum, and J. P. Sethna, (2013) Parameter space compression underlies emergent theories and predictive models. Science, 342, 604–607
https://doi.org/10.1126/science.1238723. pmid: 24179222
17 S. Boyd, and L. Vandenberghe, (2004) Convex Optimization. New York: Cambridge University Press
18 C. G. Moles, , P. Mendes, and J. R. Banga, (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res., 13, 2467–2474
https://doi.org/10.1101/gr.1262503. pmid: 14559783
19 J. O. Ramsay, , G. Hooker, , D. Campbell, and J. Cao, (2007) Parameter estimation for differential equations: a generalized smoothing approach. J. R. Stat. Soc. Series B Stat. Methodol., 69, 741–796.
https://doi.org/10.1111/j.1467-9868.2007.00610.x.
20 S. Zenker, , J. Rubin, and G. Clermont, (2007) From inverse problems in mathematical physiology to quantitative differential diagnoses. PLoS Comput. Biol., 3, e204
https://doi.org/10.1371/journal.pcbi.0030204. pmid: 17997590
21 D. A. Campbell, and O. Chkrebtii, (2013) Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates. Math. Biosci., 246, 283–292
https://doi.org/10.1016/j.mbs.2013.03.011. pmid: 23579098
22 J. R. Banga, and E. Balsa-Canto, (2008) Parameter estimation and optimal experimental design. Essays Biochem., 45, 195–210
https://doi.org/10.1042/bse0450195. pmid: 18793133
23 C. Kreutz, and J. Timmer, (2009) Systems biology: experimental design. FEBS J., 276, 923–942
https://doi.org/10.1111/j.1742-4658.2008.06843.x. pmid: 19215298
24 P. Meyer, , T. Cokelaer, , D. Chandran, , K. H. Kim, , P. R. Loh, , G. Tucker, , M. Lipson, , B. Berger, , C. Kreutz, , A. Raue, (2014) Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach. BMC Syst. Biol., 8, 13
https://doi.org/10.1186/1752-0509-8-13. pmid: 24507381
25 M. Apri, , M. de Gee, and J. Molenaar, (2012) Complexity reduction preserving dynamical behavior of biochemical networks. J. Theor. Biol., 304, 16–26
https://doi.org/10.1016/j.jtbi.2012.03.019. pmid: 22465110
26 S. Danø, , M. F. Madsen, , H. Schmidt, and G. Cedersund, (2006) Reduction of a biochemical model with preservation of its basic dynamic properties. FEBS J., 273, 4862–4877
https://doi.org/10.1111/j.1742-4658.2006.05485.x. pmid: 17010168
27 P. D. Kourdis, , A. G. Palasantza, and D. A. Goussis, (2013) Algorithmic asymptotic analysis of the NF- kB signaling system. Comput. Math. Appl., 65, 1516–1534
https://doi.org/10.1016/j.camwa.2012.11.004.
28 O. Radulescu, , A. N. Gorban, , A. Zinovyev, and V. Noel, (2012) Reduction of dynamical biochemical reactions networks in computational biology. Front. Genet., 3, 131
https://doi.org/10.3389/fgene.2012.00131. pmid: 22833754
29 J. Vanlier, , C. A. Tiemann, , P. A. J. Hilbers, and N. A. W. van Riel, (2012) An integrated strategy for prediction uncertainty analysis. Bioinformatics, 28, 1130–1135
https://doi.org/10.1093/bioinformatics/bts088. pmid: 22355081
30 J. Vanlier, , C. A. Tiemann, , P. A. J. Hilbers, and N. A. W. van Riel, (2012) A Bayesian approach to targeted experiment design. Bioinformatics, 28, 1136–1142
https://doi.org/10.1093/bioinformatics/bts092. pmid: 22368245
31 X. Huan, and Y. M. Marzouk, (2013) Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys., 232, 288–317
https://doi.org/10.1016/j.jcp.2012.08.013.
32 E. Pauwels, , C. Lajaunie, and J. P. Vert, (2014) A Bayesian active learning strategy for sequential experimental design in systems biology. BMC Syst. Biol., 8, 102
https://doi.org/10.1186/s12918-014-0102-6. pmid: 25256134
33 J. Liepe, , S. Filippi, , M. Komorowski, and M. P. H. Stumpf, (2013) Maximizing the information content of experiments in systems biology. PLoS Comput. Biol., 9, e1002888
https://doi.org/10.1371/journal.pcbi.1002888. pmid: 23382663
34 A. G. Busetto, , A. Hauser, , G. Krummenacher, , M. Sunnåker, , S. Dimopoulos, , C. S. Ong, , J. Stelling, and J. M. Buhmann, (2013) Near-optimal experimental design for model selection in systems biology. Bioinformatics, 29, 2625–2632
https://doi.org/10.1093/bioinformatics/btt436. pmid: 23900189
35 D. Faller, , U. Klingmüller, and J. Timmer, (2003) Simulation methods for optimal experimental design in systems biology. Simulation, 79, 717–725
https://doi.org/10.1177/0037549703040937.
36 F. P. Casey, , D. Baird, , Q. Feng, , R. N. Gutenkunst, , J. J. Waterfall, , C. R. Myers, , K. S. Brown, , R. A. Cerione, and J. P. Sethna, (2007) Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model. IET Syst. Biol., 1, 190–202
https://doi.org/10.1049/iet-syb:20060065. pmid: 17591178
37 R. Krüger, and R. Heinrich, (2004) Model reduction and analysis of robustness for the Wnt/-Catenin signal transduction pathway. Genome Inform., 15, 138–148
38 Z. P. Gerdtzen, , P. Daoutidis, and W. S. Hu, (2004) Non-linear reduction for kinetic models of metabolic reaction networks. Metab. Eng., 6, 140–154
https://doi.org/10.1016/j.ymben.2003.11.003. pmid: 15113567
39 N. Vora, and P. Daoutidis, (2001) Nonlinear model reduction of chemical reaction systems. AIChE J., 47, 2320–2332
https://doi.org/10.1002/aic.690471016.
40 S. H. Lam, (2013) Model reductions with special CSP data. Combust. Flame, 160, 2707–2711
https://doi.org/10.1016/j.combustflame.2013.06.013.
41 J. C. W. Kuo, and J. Wei, (1969) Lumping analysis in monomolecular reaction systems. analysis of approximately lumpable system. Ind. Eng. Chem. Fundam., 8, 124–133
https://doi.org/10.1021/i160029a020.
42 J. C. Liao, and E. N. Lightfoot, Jr. (1988) Lumping analysis of biochemical reaction systems with time scale separation. Biotechnol. Bioeng., 31, 869–879
https://doi.org/10.1002/bit.260310815. pmid: 18584692
43 C. Brochot, , J. Tóth, and F. Y. Bois, (2005) Lumping in pharmacokinetics. J. Pharmacokinet. Pharmacodyn., 32, 719–736
https://doi.org/10.1007/s10928-005-0054-y. pmid: 16341473
44 A Dokoumetzidis, L Aarons (2009) Proper lumping in systems biology models. IET Syst. Biol., 3, 40–51
45 C. Seigneur, , G. Stephanopoulos, and R. W. Carr Jr., (1982) Dynamic sensitivity analysis of chemical reaction systems: a variational method. Chem. Eng. Sci., 37, 845–853
https://doi.org/10.1016/0009-2509(82)80172-3.
46 T. Turányi, , T. Bérces, and S. Vajda, (1989) Reaction rate analysis of complex kinetic systems. Int. J. Chem. Kinet., 21, 83–99
https://doi.org/10.1002/kin.550210203.
47 L. Petzold, and W. Zhu, (1999) Model reduction for chemical kinetics: an optimization approach. AIChE J., 45, 869–886
https://doi.org/10.1002/aic.690450418.
48 G. Liu, , M. T. Swihart, and S. Neelamegham, (2005) Sensitivity, principal component and flux analysis applied to signal transduction: the case of epidermal growth factor mediated signaling. Bioinformatics, 21, 1194–1202
https://doi.org/10.1093/bioinformatics/bti118. pmid: 15531606
49 H. Schmidt, , M. F. Madsen, , S. Danø, and G. Cedersund, (2008) Complexity reduction of biochemical rate expressions. Bioinformatics, 24, 848–854
https://doi.org/10.1093/bioinformatics/btn035. pmid: 18267948
50 B. Steiert, , A. Raue, , J. Timmer, and C. Kreutz, (2012) Experimental design for parameter estimation of gene regulatory networks. PLoS One, 7, e40052
https://doi.org/10.1371/journal.pone.0040052. pmid: 22815723
51 T. Maiwald, , H. Hass, , B. Steiert, , J. Vanlier, , R. Engesser, , A. Raue, , F. Kipkeew, , H. H. Bock, , D. Kaschek, , C. Kreutz, , et al.et al. (2016) Driving the model to its limit: profile likelihood based model reduction. PLoS One, 11, e0162366
https://doi.org/10.1371/journal.pone.0162366. pmid: 27588423
52 M. K. Transtrum, and P. Qiu, (2012) Optimal experiment selection for parameter estimation in biological differential equation models. BMC Bioinformatics, 13, 181
https://doi.org/10.1186/1471-2105-13-181. pmid: 22838836
53 M. K. Transtrum, and P. Qiu, (2014) Model reduction by manifold boundaries. Phys. Rev. Lett., 113, 098701
https://doi.org/10.1103/PhysRevLett.113.098701. pmid: 25216014
54 M. K. Transtrum, and P. Qiu, (2016) Bridging mechanistic and phenomenological models of complex biological systems. PLoS Comput. Biol., 12, e1004915
https://doi.org/10.1371/journal.pcbi.1004915. pmid: 27187545
55 Z. Kutalik, , K. H. Cho, and O. Wolkenhauer, (2004) Optimal sampling time selection for parameter estimation in dynamic pathway modeling. Biosystems, 75, 43–55
https://doi.org/10.1016/j.biosystems.2004.03.007. pmid: 15245803
56 S. Bandara, , J. P. Schlöder, , R. Eils, , H. G. Bock, and T. Meyer, (2009) Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput. Biol., 5, e1000558
https://doi.org/10.1371/journal.pcbi.1000558. pmid: 19911077
57 D. R. Hagen, , J. K. White, and B. Tidor, (2013) Convergence in parameters and predictions using computational experimental design. Interface Focus, 3, 20130008
https://doi.org/10.1098/rsfs.2013.0008. pmid: 24511374
58 T. Toni, , D. Welch, , N. Strelkowa, , A. Ipsen, and M. P. Stumpf, (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface, 6, 187–202
https://doi.org/10.1098/rsif.2008.0172. pmid: 19205079
59 BR Frieden (2000) Physics from fisher information: a unification. Am. J. Phys., 68, 1064–1065
60 M. K. Transtrum, , B. B. Machta, and J. P. Sethna, (2011) Geometry of nonlinear least squares with applications to sloppy models and optimization. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 83, 036701
https://doi.org/10.1103/PhysRevE.83.036701. pmid: 21517619
61 J. R. Leis, and M. A. Kramer, (1988) The simultaneous solution and sensitivity analysis of systems described by ordinary differential equations. ACM Trans. Math. Softw., 14, 45–60
https://doi.org/10.1145/42288.46156.
62 A. Kumar, , P. D. Christofides, and P. Daoutidis, (1998) Singular perturbation modeling of nonlinear processes with nonexplicit time-scale multiplicity. Chem. Eng. Sci., 53, 1491–1504
https://doi.org/10.1016/S0009-2509(98)00006-2.
63 T. J. Snowden, , P. H. van der Graaf, and M. J. Tindall, (2017) Methods of model reduction for large-scale biological systems: a survey of current methods and trends. Bull. Math. Biol., 79, 1449–1486
https://doi.org/10.1007/s11538-017-0277-2. pmid: 28656491
64 R. Heinrich, and S. Schuster, (1996) The Regulation of Cellular Systems. Springer: New York
65 E. Voit, (2012) A First Course in Systems Biology. 1st ed., Garland Science: New York
66 M. S. Okino, and M. L. Mavrovouniotis, (1998) Simplification of mathematical models of chemical reaction systems. Chem. Rev., 98, 391–408
https://doi.org/10.1021/cr950223l. pmid: 11848905
67 J. Wolf, and R. Heinrich, (2000) Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. Biochem. J., 345, 321–334
https://doi.org/10.1042/bj3450321. pmid: 10702114
68 T. Sauter, , E. D. Gilles, , F. Allgöwer, , J. Saez-Rodriguez, , H. Conzelmann, and E. Bullinger, (2004) Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling. Syst. Biol. (Stevenage), 1, 159–169
https://doi.org/doi:10.1049/sb:20045011. pmid: 17052126
69 W. Liebermeister, , U. Baur, and E. Klipp, (2005) Biochemical network models simplified by balanced truncation. FEBS J., 272, 4034–4043
https://doi.org/10.1111/j.1742-4658.2005.04780.x. pmid: 16098187
70 J. Maertens, , B. Donckels, , G. Lequeux, and P. Vanrolleghem, (2005) Metabolic model reduction by metabolite pooling on the basis of dynamic phase planes and metabolite correlation analysis. In Proceedings of the Conference on Modeling and Simulation in Biology, Medicine and Biomedical Engineering. Linkping , Sweden.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed