|
|
|
Experimental design and model reduction in systems biology |
Jenny E. Jeong1, Qinwei Zhuang2, Mark K. Transtrum3, Enlu Zhou4, Peng Qiu5( ) |
1. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA 2. School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA 3. Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA 4. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA 5. Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA; Emory University, Atlanta, GA 30322, USA |
|
|
Abstract: Background: In systems biology, the dynamics of biological networks are often modeled with ordinary differential equations (ODEs) that encode interacting components in the systems, resulting in highly complex models. In contrast, the amount of experimentally available data is almost always limited, and insufficient to constrain the parameters. In this situation, parameter estimation is a very challenging problem. To address this challenge, two intuitive approaches are to perform experimental design to generate more data, and to perform model reduction to simplify the model. Experimental design and model reduction have been traditionally viewed as two distinct areas, and an extensive literature and excellent reviews exist on each of the two areas. Intriguingly, however, the intrinsic connections between the two areas have not been recognized. Results: Experimental design and model reduction are deeply related, and can be considered as one unified framework. There are two recent methods that can tackle both areas, one based on model manifold and the other based on profile likelihood. We use a simple sum-of-two-exponentials example to discuss the concepts and algorithmic details of both methods, and provide Matlab-based code and implementation which are useful resources for the dissemination and adoption of experimental design and model reduction in the biology community. Conclusions: From a geometric perspective, we consider the experimental data as a point in a high-dimensional data space and the mathematical model as a manifold living in this space. Parameter estimation can be viewed as a projection of the data point onto the manifold. By examining the singularity around the projected point on the manifold, we can perform both experimental design and model reduction. Experimental design identifies new experiments that expand the manifold and remove the singularity, whereas model reduction identifies the nearest boundary, which is the nearest singularity that suggests an appropriate form of a reduced model. This geometric interpretation represents one step toward the convergence of experimental design and model reduction as a unified framework. |
Key words:
experimental design
model reduction
model manifold
profile likelihood
|
收稿日期: 2018-01-22
出版日期: 2018-12-10
|
Corresponding Author(s):
Peng Qiu
|
1 |
A. D. Lander, (2004) A calculus of purpose. PLoS Biol., 2, e164
https://doi.org/10.1371/journal.pbio.0020164.
pmid: 15208717
|
2 |
E. A. Sobie, , Y. S. Lee, , S. L. Jenkins, and R. Iyengar, (2011) Systems biology‒biomedical modeling. Sci. Signal., 4, tr2
https://doi.org/10.1126/scisignal.2001989.
pmid: 21917716
|
3 |
F. Fages, , S. Gay, and S. Soliman, (2015) Inferring reaction systems from ordinary differential equations. Theor. Comput. Sci., 599, 64–78
https://doi.org/10.1016/j.tcs.2014.07.032.
|
4 |
S. K. Jha, and C. J. Langmead, (2012) Exploring behaviors of stochastic differential equation models of biological systems using change of measures. BMC Bioinformatics, 13, S8
https://doi.org/10.1186/1471-2105-13-S5-S8.
pmid: 22537012
|
5 |
S. A. Kauffman, (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 22, 437–467
https://doi.org/10.1016/0022-5193(69)90015-0.
pmid: 5803332
|
6 |
K. Sachs, , D. Gifford, , T. Jaakkola, , P. Sorger, and D. A. Lauffenburger, (2002) Bayesian network approach to cell signaling pathway modeling. Sci. STKE, 2002, pe38
pmid: 12209052.
|
7 |
I. Koch, (2015) Petri nets in systems biology. Soft. Syst. Model., 14, 703–710
https://doi.org/10.1007/s10270-014-0421-5.
|
8 |
W. Materi, and D. S. Wishart, (2007) Computational systems biology in drug discovery and development: methods and applications. Drug Discov. Today, 12, 295–303
https://doi.org/10.1016/j.drudis.2007.02.013.
pmid: 17395089
|
9 |
D. Machado, , R. S. Costa, , M. Rocha, , E. C. Ferreira, , B. Tidor, and I. Rocha, (2011) Modeling formalisms in systems biology. AMB Express, 1, 45
https://doi.org/10.1186/2191-0855-1-45.
pmid: 22141422
|
10 |
E. Bartocci, and P. Lió, (2016) Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol., 12, e1004591
https://doi.org/10.1371/journal.pcbi.1004591.
pmid: 26795950
|
11 |
H. Kitano, (2002) Computational systems biology. Nature, 420, 206–210
https://doi.org/10.1038/nature01254.
pmid: 12432404
|
12 |
B. B. Aldridge, , J. M. Burke, , D. A. Lauffenburger, and P. K. Sorger, (2006) Physicochemical modelling of cell signalling pathways. Nat. Cell Biol., 8, 1195–1203
https://doi.org/10.1038/ncb1497.
pmid: 17060902
|
13 |
J. Anderson, , Y. C. Chang, and A. Papachristodoulou, (2011) Model decomposition and reduction tools for large-scale networks in systems biology. Automatica, 47, 1165–1174
https://doi.org/10.1016/j.automatica.2011.03.010.
|
14 |
T. Quaiser, , A. Dittrich, , F. Schaper, and M. Mönnigmann, (2011) A simple work flow for biologically inspired model reduction--application to early JAK-STAT signaling. BMC Syst. Biol., 5, 30
https://doi.org/10.1186/1752-0509-5-30.
pmid: 21338487
|
15 |
A. F. Villaverde, , D. Henriques, , K. Smallbone, , S. Bongard, , J. Schmid, , D. Cicin-Sain, , A. Crombach, , J. Saez-Rodriguez, , K. Mauch, , E. Balsa-Canto, , et al.et al. (2015) BioPreDyn-bench: a suite of benchmark problems for dynamic modelling in systems biology. BMC Syst. Biol., 9, 8
https://doi.org/10.1186/s12918-015-0144-4.
pmid: 25880925
|
16 |
B. B. Machta, , R. Chachra, , M. K. Transtrum, and J. P. Sethna, (2013) Parameter space compression underlies emergent theories and predictive models. Science, 342, 604–607
https://doi.org/10.1126/science.1238723.
pmid: 24179222
|
17 |
S. Boyd, and L. Vandenberghe, (2004) Convex Optimization. New York: Cambridge University Press
|
18 |
C. G. Moles, , P. Mendes, and J. R. Banga, (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res., 13, 2467–2474
https://doi.org/10.1101/gr.1262503.
pmid: 14559783
|
19 |
J. O. Ramsay, , G. Hooker, , D. Campbell, and J. Cao, (2007) Parameter estimation for differential equations: a generalized smoothing approach. J. R. Stat. Soc. Series B Stat. Methodol., 69, 741–796.
https://doi.org/10.1111/j.1467-9868.2007.00610.x.
|
20 |
S. Zenker, , J. Rubin, and G. Clermont, (2007) From inverse problems in mathematical physiology to quantitative differential diagnoses. PLoS Comput. Biol., 3, e204
https://doi.org/10.1371/journal.pcbi.0030204.
pmid: 17997590
|
21 |
D. A. Campbell, and O. Chkrebtii, (2013) Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates. Math. Biosci., 246, 283–292
https://doi.org/10.1016/j.mbs.2013.03.011.
pmid: 23579098
|
22 |
J. R. Banga, and E. Balsa-Canto, (2008) Parameter estimation and optimal experimental design. Essays Biochem., 45, 195–210
https://doi.org/10.1042/bse0450195.
pmid: 18793133
|
23 |
C. Kreutz, and J. Timmer, (2009) Systems biology: experimental design. FEBS J., 276, 923–942
https://doi.org/10.1111/j.1742-4658.2008.06843.x.
pmid: 19215298
|
24 |
P. Meyer, , T. Cokelaer, , D. Chandran, , K. H. Kim, , P. R. Loh, , G. Tucker, , M. Lipson, , B. Berger, , C. Kreutz, , A. Raue, (2014) Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach. BMC Syst. Biol., 8, 13
https://doi.org/10.1186/1752-0509-8-13.
pmid: 24507381
|
25 |
M. Apri, , M. de Gee, and J. Molenaar, (2012) Complexity reduction preserving dynamical behavior of biochemical networks. J. Theor. Biol., 304, 16–26
https://doi.org/10.1016/j.jtbi.2012.03.019.
pmid: 22465110
|
26 |
S. Danø, , M. F. Madsen, , H. Schmidt, and G. Cedersund, (2006) Reduction of a biochemical model with preservation of its basic dynamic properties. FEBS J., 273, 4862–4877
https://doi.org/10.1111/j.1742-4658.2006.05485.x.
pmid: 17010168
|
27 |
P. D. Kourdis, , A. G. Palasantza, and D. A. Goussis, (2013) Algorithmic asymptotic analysis of the NF- kB signaling system. Comput. Math. Appl., 65, 1516–1534
https://doi.org/10.1016/j.camwa.2012.11.004.
|
28 |
O. Radulescu, , A. N. Gorban, , A. Zinovyev, and V. Noel, (2012) Reduction of dynamical biochemical reactions networks in computational biology. Front. Genet., 3, 131
https://doi.org/10.3389/fgene.2012.00131.
pmid: 22833754
|
29 |
J. Vanlier, , C. A. Tiemann, , P. A. J. Hilbers, and N. A. W. van Riel, (2012) An integrated strategy for prediction uncertainty analysis. Bioinformatics, 28, 1130–1135
https://doi.org/10.1093/bioinformatics/bts088.
pmid: 22355081
|
30 |
J. Vanlier, , C. A. Tiemann, , P. A. J. Hilbers, and N. A. W. van Riel, (2012) A Bayesian approach to targeted experiment design. Bioinformatics, 28, 1136–1142
https://doi.org/10.1093/bioinformatics/bts092.
pmid: 22368245
|
31 |
X. Huan, and Y. M. Marzouk, (2013) Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys., 232, 288–317
https://doi.org/10.1016/j.jcp.2012.08.013.
|
32 |
E. Pauwels, , C. Lajaunie, and J. P. Vert, (2014) A Bayesian active learning strategy for sequential experimental design in systems biology. BMC Syst. Biol., 8, 102
https://doi.org/10.1186/s12918-014-0102-6.
pmid: 25256134
|
33 |
J. Liepe, , S. Filippi, , M. Komorowski, and M. P. H. Stumpf, (2013) Maximizing the information content of experiments in systems biology. PLoS Comput. Biol., 9, e1002888
https://doi.org/10.1371/journal.pcbi.1002888.
pmid: 23382663
|
34 |
A. G. Busetto, , A. Hauser, , G. Krummenacher, , M. Sunnåker, , S. Dimopoulos, , C. S. Ong, , J. Stelling, and J. M. Buhmann, (2013) Near-optimal experimental design for model selection in systems biology. Bioinformatics, 29, 2625–2632
https://doi.org/10.1093/bioinformatics/btt436.
pmid: 23900189
|
35 |
D. Faller, , U. Klingmüller, and J. Timmer, (2003) Simulation methods for optimal experimental design in systems biology. Simulation, 79, 717–725
https://doi.org/10.1177/0037549703040937.
|
36 |
F. P. Casey, , D. Baird, , Q. Feng, , R. N. Gutenkunst, , J. J. Waterfall, , C. R. Myers, , K. S. Brown, , R. A. Cerione, and J. P. Sethna, (2007) Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model. IET Syst. Biol., 1, 190–202
https://doi.org/10.1049/iet-syb:20060065.
pmid: 17591178
|
37 |
R. Krüger, and R. Heinrich, (2004) Model reduction and analysis of robustness for the Wnt/-Catenin signal transduction pathway. Genome Inform., 15, 138–148
|
38 |
Z. P. Gerdtzen, , P. Daoutidis, and W. S. Hu, (2004) Non-linear reduction for kinetic models of metabolic reaction networks. Metab. Eng., 6, 140–154
https://doi.org/10.1016/j.ymben.2003.11.003.
pmid: 15113567
|
39 |
N. Vora, and P. Daoutidis, (2001) Nonlinear model reduction of chemical reaction systems. AIChE J., 47, 2320–2332
https://doi.org/10.1002/aic.690471016.
|
40 |
S. H. Lam, (2013) Model reductions with special CSP data. Combust. Flame, 160, 2707–2711
https://doi.org/10.1016/j.combustflame.2013.06.013.
|
41 |
J. C. W. Kuo, and J. Wei, (1969) Lumping analysis in monomolecular reaction systems. analysis of approximately lumpable system. Ind. Eng. Chem. Fundam., 8, 124–133
https://doi.org/10.1021/i160029a020.
|
42 |
J. C. Liao, and E. N. Lightfoot, Jr. (1988) Lumping analysis of biochemical reaction systems with time scale separation. Biotechnol. Bioeng., 31, 869–879
https://doi.org/10.1002/bit.260310815.
pmid: 18584692
|
43 |
C. Brochot, , J. Tóth, and F. Y. Bois, (2005) Lumping in pharmacokinetics. J. Pharmacokinet. Pharmacodyn., 32, 719–736
https://doi.org/10.1007/s10928-005-0054-y.
pmid: 16341473
|
44 |
A Dokoumetzidis, L Aarons (2009) Proper lumping in systems biology models. IET Syst. Biol., 3, 40–51
|
45 |
C. Seigneur, , G. Stephanopoulos, and R. W. Carr Jr., (1982) Dynamic sensitivity analysis of chemical reaction systems: a variational method. Chem. Eng. Sci., 37, 845–853
https://doi.org/10.1016/0009-2509(82)80172-3.
|
46 |
T. Turányi, , T. Bérces, and S. Vajda, (1989) Reaction rate analysis of complex kinetic systems. Int. J. Chem. Kinet., 21, 83–99
https://doi.org/10.1002/kin.550210203.
|
47 |
L. Petzold, and W. Zhu, (1999) Model reduction for chemical kinetics: an optimization approach. AIChE J., 45, 869–886
https://doi.org/10.1002/aic.690450418.
|
48 |
G. Liu, , M. T. Swihart, and S. Neelamegham, (2005) Sensitivity, principal component and flux analysis applied to signal transduction: the case of epidermal growth factor mediated signaling. Bioinformatics, 21, 1194–1202
https://doi.org/10.1093/bioinformatics/bti118.
pmid: 15531606
|
49 |
H. Schmidt, , M. F. Madsen, , S. Danø, and G. Cedersund, (2008) Complexity reduction of biochemical rate expressions. Bioinformatics, 24, 848–854
https://doi.org/10.1093/bioinformatics/btn035.
pmid: 18267948
|
50 |
B. Steiert, , A. Raue, , J. Timmer, and C. Kreutz, (2012) Experimental design for parameter estimation of gene regulatory networks. PLoS One, 7, e40052
https://doi.org/10.1371/journal.pone.0040052.
pmid: 22815723
|
51 |
T. Maiwald, , H. Hass, , B. Steiert, , J. Vanlier, , R. Engesser, , A. Raue, , F. Kipkeew, , H. H. Bock, , D. Kaschek, , C. Kreutz, , et al.et al. (2016) Driving the model to its limit: profile likelihood based model reduction. PLoS One, 11, e0162366
https://doi.org/10.1371/journal.pone.0162366.
pmid: 27588423
|
52 |
M. K. Transtrum, and P. Qiu, (2012) Optimal experiment selection for parameter estimation in biological differential equation models. BMC Bioinformatics, 13, 181
https://doi.org/10.1186/1471-2105-13-181.
pmid: 22838836
|
53 |
M. K. Transtrum, and P. Qiu, (2014) Model reduction by manifold boundaries. Phys. Rev. Lett., 113, 098701
https://doi.org/10.1103/PhysRevLett.113.098701.
pmid: 25216014
|
54 |
M. K. Transtrum, and P. Qiu, (2016) Bridging mechanistic and phenomenological models of complex biological systems. PLoS Comput. Biol., 12, e1004915
https://doi.org/10.1371/journal.pcbi.1004915.
pmid: 27187545
|
55 |
Z. Kutalik, , K. H. Cho, and O. Wolkenhauer, (2004) Optimal sampling time selection for parameter estimation in dynamic pathway modeling. Biosystems, 75, 43–55
https://doi.org/10.1016/j.biosystems.2004.03.007.
pmid: 15245803
|
56 |
S. Bandara, , J. P. Schlöder, , R. Eils, , H. G. Bock, and T. Meyer, (2009) Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput. Biol., 5, e1000558
https://doi.org/10.1371/journal.pcbi.1000558.
pmid: 19911077
|
57 |
D. R. Hagen, , J. K. White, and B. Tidor, (2013) Convergence in parameters and predictions using computational experimental design. Interface Focus, 3, 20130008
https://doi.org/10.1098/rsfs.2013.0008.
pmid: 24511374
|
58 |
T. Toni, , D. Welch, , N. Strelkowa, , A. Ipsen, and M. P. Stumpf, (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface, 6, 187–202
https://doi.org/10.1098/rsif.2008.0172.
pmid: 19205079
|
59 |
BR Frieden (2000) Physics from fisher information: a unification. Am. J. Phys., 68, 1064–1065
|
60 |
M. K. Transtrum, , B. B. Machta, and J. P. Sethna, (2011) Geometry of nonlinear least squares with applications to sloppy models and optimization. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 83, 036701
https://doi.org/10.1103/PhysRevE.83.036701.
pmid: 21517619
|
61 |
J. R. Leis, and M. A. Kramer, (1988) The simultaneous solution and sensitivity analysis of systems described by ordinary differential equations. ACM Trans. Math. Softw., 14, 45–60
https://doi.org/10.1145/42288.46156.
|
62 |
A. Kumar, , P. D. Christofides, and P. Daoutidis, (1998) Singular perturbation modeling of nonlinear processes with nonexplicit time-scale multiplicity. Chem. Eng. Sci., 53, 1491–1504
https://doi.org/10.1016/S0009-2509(98)00006-2.
|
63 |
T. J. Snowden, , P. H. van der Graaf, and M. J. Tindall, (2017) Methods of model reduction for large-scale biological systems: a survey of current methods and trends. Bull. Math. Biol., 79, 1449–1486
https://doi.org/10.1007/s11538-017-0277-2.
pmid: 28656491
|
64 |
R. Heinrich, and S. Schuster, (1996) The Regulation of Cellular Systems. Springer: New York
|
65 |
E. Voit, (2012) A First Course in Systems Biology. 1st ed., Garland Science: New York
|
66 |
M. S. Okino, and M. L. Mavrovouniotis, (1998) Simplification of mathematical models of chemical reaction systems. Chem. Rev., 98, 391–408
https://doi.org/10.1021/cr950223l.
pmid: 11848905
|
67 |
J. Wolf, and R. Heinrich, (2000) Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. Biochem. J., 345, 321–334
https://doi.org/10.1042/bj3450321.
pmid: 10702114
|
68 |
T. Sauter, , E. D. Gilles, , F. Allgöwer, , J. Saez-Rodriguez, , H. Conzelmann, and E. Bullinger, (2004) Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling. Syst. Biol. (Stevenage), 1, 159–169
https://doi.org/doi:10.1049/sb:20045011.
pmid: 17052126
|
69 |
W. Liebermeister, , U. Baur, and E. Klipp, (2005) Biochemical network models simplified by balanced truncation. FEBS J., 272, 4034–4043
https://doi.org/10.1111/j.1742-4658.2005.04780.x.
pmid: 16098187
|
70 |
J. Maertens, , B. Donckels, , G. Lequeux, and P. Vanrolleghem, (2005) Metabolic model reduction by metabolite pooling on the basis of dynamic phase planes and metabolite correlation analysis. In Proceedings of the Conference on Modeling and Simulation in Biology, Medicine and Biomedical Engineering. Linkping , Sweden.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|