|
|
|
Differential methylation analysis for bisulfite sequencing using DSS |
Hao Feng1, Hao Wu2( ) |
1. Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA 2. Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA |
|
|
Abstract: Bisulfite sequencing (BS-seq) technology measures DNA methylation at single nucleotide resolution. A key task in BS-seq data analysis is to identify differentially methylation (DM) under different conditions. Here we provide a tutorial for BS-seq DM analysis using Bioconductor package DSS. DSS uses a beta-binomial model to characterize the sequence counts from BS-seq, and implements rigorous statistical method for hypothesis testing. It provides flexible functionalities for a variety of DM analyses. |
Key words:
epigenetics
DNA methylation
bisulfite sequencing
differential methylation
|
收稿日期: 2019-05-21
出版日期: 2019-12-31
|
Corresponding Author(s):
Hao Wu
|
1 |
T. H. Bestor, (2000) The DNA methyltransferases of mammals. Hum. Mol. Genet., 9, 2395–2402
https://doi.org/10.1093/hmg/9.16.2395.
pmid: 11005794
|
2 |
A. Bird, (2002) DNA methylation patterns and epigenetic memory. Genes Dev., 16, 6–21
https://doi.org/10.1101/gad.947102.
pmid: 11782440
|
3 |
W. Reik, (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447, 425–432
https://doi.org/10.1038/nature05918.
pmid: 17522676
|
4 |
E. Li, , C. Beard, and R. Jaenisch, (1993) Role for DNA methylation in genomic imprinting. Nature, 366, 362–365
https://doi.org/10.1038/366362a0.
pmid: 8247133
|
5 |
P. A. Jones, (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 13, 484–492
https://doi.org/10.1038/nrg3230.
pmid: 22641018
|
6 |
P. A. Jones, and D. Takai, (2001) The role of DNA methylation in mammalian epigenetics. Science, 293, 1068–1070
https://doi.org/10.1126/science.1063852.
pmid: 11498573
|
7 |
S. B. Baylin, (2005) DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol., 2, S4–S11
https://doi.org/10.1038/ncponc0354.
pmid: 16341240
|
8 |
P. W. Laird, and R. Jaenisch, (1996) The role of DNA methylation in cancer genetic and epigenetics. Annu. Rev. Genet., 30, 441–464
https://doi.org/10.1146/annurev.genet.30.1.441.
pmid: 8982461
|
9 |
P. A. Jones, (1996) DNA methylation errors and cancer. Cancer Res., 56, 2463–2467
pmid: 8653676.
|
10 |
H. Feng, , P. Jin, and H. Wu, (2018) Disease prediction by cell-free DNA methylation. Brief. Bioinform., 20, 585–597
https://doi.org/10.1093/bib/bby029
pmid: 29672679.
|
11 |
R. Lister, , R. C. O’Malley, , J. Tonti-Filippini, , B. D. Gregory, , C. C. Berry, , A. H. Millar, and J. R. Ecker, (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133, 523–536
https://doi.org/10.1016/j.cell.2008.03.029.
pmid: 18423832
|
12 |
D. Zilberman, , M. Gehring, , R. K. Tran, , T. Ballinger, and S. Henikoff, (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet., 39, 61–69
https://doi.org/10.1038/ng1929.
pmid: 17128275
|
13 |
S. J. Cokus, , S. Feng, , X. Zhang, , Z. Chen, , B. Merriman, , C. D. Haudenschild, , S. Pradhan, , S. F. Nelson, , M. Pellegrini, and S. E. Jacobsen, (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452, 215–219
https://doi.org/10.1038/nature06745.
pmid: 18278030
|
14 |
A. Zemach, , I. E. McDaniel, , P. Silva, and D. Zilberman, (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 328, 916–919
https://doi.org/10.1126/science.1186366.
pmid: 20395474
|
15 |
A. Akalin, , M. Kormaksson, , S. Li, , F. E. Garrett-Bakelman, , M. E. Figueroa, , A. Melnick, and C. E. Mason, (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol., 13, R87
https://doi.org/10.1186/gb-2012-13-10-r87.
pmid: 23034086
|
16 |
K. D. Hansen, , B. Langmead, and R. A. Irizarry, (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol., 13, R83
https://doi.org/10.1186/gb-2012-13-10-r83.
pmid: 23034175
|
17 |
K. Hebestreit, , M. Dugas, and H. U. Klein, (2013) Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics, 29, 1647–1653
https://doi.org/10.1093/bioinformatics/btt263.
pmid: 23658421
|
18 |
H. Feng, , K. N. Conneely, and H. Wu, (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res., 42, e69
https://doi.org/10.1093/nar/gku154.
pmid: 24561809
|
19 |
H. Wu,, T.L. Xu,, H. Feng,, L. Chen,, B. Li,, B. Yao,, Z.H. Qin,, P. Jin,, and K.N. Conneely, (2015) Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic acids Res. 43, e141
|
20 |
Y. Park, and H. Wu, (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics, 32, 1446–1453
https://doi.org/10.1093/bioinformatics/btw026.
pmid: 26819470
|
21 |
X. Yu, and S. Sun, (2016) HMM-DM: identifying differentially methylated regions using a hidden Markov model. Stat. Appl. Genet. Mol. Biol., 15, 69–81
https://doi.org/10.1515/sagmb-2015-0077.
pmid: 26887041
|
22 |
S. Sun, and X. Yu, (2016) HMM-Fisher: identifying differential methylation using a hidden Markov model and Fisher’s exact test. Stat. Appl. Genet. Mol. Biol., 15, 55–67
https://doi.org/10.1515/sagmb-2015-0076.
pmid: 26854292
|
23 |
Y. Assenov, , F. Müller, , P. Lutsik, , J. Walter, , T. Lengauer, and C. Bock, (2014) Comprehensive analysis of DNA methylation data with RnBeads. Nat. Methods, 11, 1138–1140
https://doi.org/10.1038/nmeth.3115.
pmid: 25262207
|
24 |
G.K. Smyth, (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3,1–25 .
https://doi.org/10.2202/1544-6115.1027
|
25 |
M. I. Love, , W. Huber, and S. Anders, (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
https://doi.org/10.1186/s13059-014-0550-8.
pmid: 25516281
|
26 |
H. Wu, , C. Wang, and Z. Wu, (2012) A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics,
https://doi.org/10.1093/biostatistics/kxs033
pmid: 23001152.
|
27 |
F. Krueger, and S. R. Andrews, (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27, 1571–1572
https://doi.org/10.1093/bioinformatics/btr167.
pmid: 21493656
|
28 |
A. Hascher,, A.K. Haase,, K. Hebestreit,, C. Rohde,, H.U. Klein,, M. Rius,, D. Jungen,, A. Witten,, M. Stoll,, I. Schulze,, et al. (2014) DNA methyltransferase inhibition reverses epigenetically embedded phenotypes in lung cancer preferentially affecting polycomb target genes. Clin. Cancer Res., 4,814–826
https://doi.org/10.1158/1078-0432.CCR-13-1483
|
29 |
E. Y. Chen, , C. M. Tan, , Y. Kou, , Q. Duan, , Z. Wang, , G. V. Meirelles, , N. R. Clark, and A. Ma’ayan, (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14, 128
https://doi.org/10.1186/1471-2105-14-128.
pmid: 23586463
|
30 |
M. V. Kuleshov, , M. R. Jones, , A. D. Rouillard, , N. F. Fernandez, , Q. Duan, , Z. Wang, , S. Koplev, , S. L. Jenkins, , K. M. Jagodnik, , A. Lachmann, , et al. (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res., 44, W90–W97
https://doi.org/10.1093/nar/gkw377.
pmid: 27141961
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|