|
|
|
A pan-cancer integrative pathway analysis of multi-omics data |
Henry Linder, Yuping Zhang( ) |
Department of Statistics, University of Connecticut, Storrs, CT 06269, USA |
|
|
Abstract: Background: Multi-view -omics datasets offer rich opportunities for integrative analysis across genomic, transcriptomic, and epigenetic data platforms. Statistical methods are needed to rigorously implement current research on functional biology, matching the complex dynamics of systems genomic datasets. Methods: We apply imputation for missing data and a structural, graph-theoretic pathway model to a dataset of 22 cancers across 173 signaling pathways. Our pathway model integrates multiple data platforms, and we test for differential activation between cancerous tumor and healthy tissue populations. Results: Our pathway analysis reveals significant disturbance in signaling pathways that are known to relate to oncogenesis. We identify several pathways that suggest new research directions, including the Trk signaling and focal adhesion kinase activation pathways in sarcoma. Conclusions: Our integrative analysis confirms contemporary research findings, which supports the validity of our findings. We implement an interactive data visualization for exploration of the pathway analyses, which is available online for public access. |
Key words:
multi-platform data integration
pathway analysis
imputation
cancer genomics
data visualization
|
收稿日期: 2019-07-04
出版日期: 2020-07-13
|
Corresponding Author(s):
Yuping Zhang
|
1 |
D.S., Chandrashekar, B. Bashel,, S. Akshaya,, H. Balasubramanya,, C.J. Creighton,, I. Ponce-Rodriguez,, B. Chakravarthi, and S. Varambally, (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 19, 649–658
|
2 |
Y. Zhang, , Z. Ouyang, and H. Zhao, (2017) A statistical framework for data integration through graphical models with application to cancer genomics. Ann. Appl. Stat., 11, 161–184
https://doi.org/10.1214/16-AOAS998.
pmid: 30956747
|
3 |
Cancer Genome Atlas Research Network (2017) Integrated genomic and molecular characterization of cervical cancer. Nature, 543, 378–384
https://doi.org/10.1038/nature21386.
pmid: 28112728
|
4 |
R. Shen, , A. B. Olshen, and M. Ladanyi, (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics, 25, 2906–2912
https://doi.org/10.1093/bioinformatics/btp543.
pmid: 19759197
|
5 |
A. Subramanian, , P. Tamayo, , V. K. Mootha,, S. Mukherjee,, B. L. Ebert,, M. A. Gillette,, A. Paulovich,, S. L. Pomeroy,, T. R. Golub,, E. S. Lander, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 102,15545–15550
|
6 |
J. Yan, , S. L. Risacher,, L. Shen, and A. J. Saykin, (2017) Network approaches to systems biology analysis of complex disease: integrative methods for multi -omics data. Brief. Bioinform., 19, 1370–1381
pmid: 28679163
|
7 |
Z. Ge, , J. S. Leighton, , Y. Wang, , X. Peng, , Z. Chen, , H. Chen, , Y. Sun, , F. Yao, , J. Li, , H. Zhang, , et al. (2018) Integrated genomic analysis of the ubiquitin pathway across cancer types. Cell Reports, 23, 213–226.e3
https://doi.org/10.1016/j.celrep.2018.03.047.
pmid: 29617661
|
8 |
J. K. Huang,, D.E. Carlin,, M. K. Yu,, W. Zhang,, J. F. Kreisberg,, P. Tamayo, and T. Ideker, (2018) Systematic evaluation of molecular networks for discovery of disease genes. Cell Syst., 6, 484–495
|
9 |
A. Baryshnikova, (2016) Systematic functional annotation and visualization of biological networks. Cell Syst., 2, 412–421
https://doi.org/10.1016/j.cels.2016.04.014.
pmid: 27237738
|
10 |
C. J. Vaske, , S. C. Benz, , J. Z. Sanborn, , D. Earl, , C. Szeto, , J. Zhu, , D. Haussler, and J. M. Stuart, (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using paradigm. Bioinformatics, 26, i237–i245
https://doi.org/10.1093/bioinformatics/btq182
|
11 |
J. D. Campbell, , C. Yau, , R. Bowlby, , Y. Liu, , K. Brennan, , H. Fan, , A. M. Taylor, , C. Wang, , V. Walter, , R. Akbani, , et al., (2018) Genomic, pathway network, and immunologic features distinguishing squamous carcinomas. Cell Reports, 23, 194–212.e6
https://doi.org/10.1016/j.celrep.2018.03.063.
pmid: 29617660
|
12 |
J. Ma, , A. Shojaie, and G. Michailidis, (2016) Network-based pathway enrichment analysis with incomplete network information. Bioinformatics, 32, 3165–3174
https://doi.org/10.1093/bioinformatics/btw410.
pmid: 27357170
|
13 |
D. Robinson, , E. M. Van Allen, , Y. M. Wu, , N. Schultz, , R. J. Lonigro, , J. M. Mosquera, , B. Montgomery, , M. E. Taplin, , C. C. Pritchard, , G. Attard, , et al. (2015) Integrative clinical genomics of advanced prostate cancer. Cell, 161, 1215–1228
https://doi.org/10.1016/j.cell.2015.05.001.
pmid: 26000489
|
14 |
F. Sanchez-Vega, , M. Mina, , J. Armenia, , W. K. Chatila, , A. Luna, , K. C. La, , S. Dimitriadoy, , D. L. Liu, , H. S. Kantheti, , S. Saghafinia, , et al. (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell, 173, 321–337.e10
https://doi.org/10.1016/j.cell.2018.03.035.
pmid: 29625050
|
15 |
E. Bonnet, , L. Calzone, and T. Michoel, (2015) Integrative multi -omics module network inference with Lemon-Tree. PLOS Comput. Biol., 11, e1003983
https://doi.org/10.1371/journal.pcbi.1003983.
pmid: 25679508
|
16 |
J. Hadfield, , N. J. Croucher, , R. J. Goater, , K. Abudahab, , D. M. Aanensen, and S. R. Harris, (2017) Phandango: an interactive viewer for bacterial population genomics. Bioinformatics, 34, 292–293
https://doi.org/10.1093/bioinformatics/btx610.\
|
17 |
, H. Wickham (2016) ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag
|
18 |
T. Yin, , D. Cook, and M. Lawrence, (2012) ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol., 13, R77
https://doi.org/10.1186/gb-2012-13-8-r77.
pmid: 22937822
|
19 |
P. Stempor, and J. Ahringer, (2016) SeqPlots–Interactive software for exploratory data analyses, pattern discovery and visualization in genomics. Wellcome Open Res., 1, 14
https://doi.org/10.12688/wellcomeopenres.10004.1.
pmid: 27918597
|
20 |
H. Linder, and Y. Zhang, (2019) Iterative integrated imputation for missing data and pathway models with applications to breast cancer subtypes. Comm. Statis. Appl. Meth., 26, 411–430
https://doi.org/10.29220/CSAM.2019.26.4.411
|
21 |
Y. Zhang, ,H. M. Linder, Shojaie, A. Ouyang,, Z. Shen,, R. Baggerly,, K.A. Baladandayuthapani, and V. H. Zhao, (2017) Dissecting pathway disturbances using network topology and multi-platform genomics data. Stat. Biosci., 10, 1–21
|
22 |
K. Tomczak, , P. Czerwińska, and M. Wiznerowicz, (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Pozn.), 19, A68–A77
https://doi.org/10.5114/wo.2014.47136.
pmid: 25691825
|
23 |
C.F. Schaefer, , K. Anthony,, S. Krupa, , J. Buchoff, , M. Day, , T. Hannay, and K. H. Buetow, (2008) Pid: the pathway interaction database. Nucleic acids research, 37 (suppl), D674–D679
|
24 |
T. Cai, , T. T. Cai, and A. Zhang, (2016) Structured matrix completion with applications to genomic data integration. J. Am. Stat. Assoc., 111, 621–633
https://doi.org/10.1080/01621459.2015.1021005.
pmid: 28042188
|
25 |
A. Shojaie, and G. Michailidis, (2009) Analysis of gene sets based on the underlying regulatory network. J. Comput. Biol., 16, 407–426
https://doi.org/10.1089/cmb.2008.0081.
pmid: 19254181
|
26 |
Y. Benjamini, and Y. Hochberg, (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289–300
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
|
27 |
N. Fowler, and E. Davis, (2013) Targeting B-cell receptor signaling: changing the paradigm. Hematology, 553–560
https://doi.org/10.1182/asheducation-2013.1.553.
pmid: 24319231
|
28 |
J. A. Burger, and A. Wiestner, (2018) Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat. Rev. Cancer, 18, 148–167
https://doi.org/10.1038/nrc.2017.121.
pmid: 29348577
|
29 |
R. Roskoski, Jr. (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res., 79, 34–74
https://doi.org/10.1016/j.phrs.2013.11.002.
pmid: 24269963
|
30 |
S. B. Jakowlew, (2006) Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev., 25, 435–457
https://doi.org/10.1007/s10555-006-9006-2.
pmid: 16951986
|
31 |
J. Massagué, (2008) TGFbeta in Cancer. Cell, 134, 215–230
https://doi.org/10.1016/j.cell.2008.07.001.
pmid: 18662538
|
32 |
I. Fabregat, , J. Fernando, , J. Mainez, and P. Sancho, (2014) TGF-beta signaling in cancer treatment. Curr. Pharm. Des., 20, 2934–2947
https://doi.org/10.2174/13816128113199990591.
pmid: 23944366
|
33 |
P. Iengar, (2018) Identifying pathways affected by cancer mutations. Genomics, 110, 318–328
|
34 |
Leiserson, M. D. M., Blokh, D., Sharan, R. and Raphael. B. J., (2013) Simultaneous identification of multiple driver pathways in cancer. PLOS Comput. Biol., 9, e1003054
|
35 |
C. Barletta, , D. Lazzaro, , R. Prosperi Porta, , U. Testa, , F. Grignani, , R. M. Ragusa, , R. Leone, , A. Patella, , L. Carenza, and C. Peschle, (1992) C-MYB activation and the pathogenesis of ovarian cancer. Eur. J. Gynaecol. Oncol., 13, 53–59
pmid: 1547794
|
36 |
Y. Jin, , H. Zhu, , W. Cai, , X. Fan, , Y. Wang, , Y. Niu, , F. Song, and Y. Bu, (2017) B-myb is up-regulated and promotes cell growth and motility in non-small cell lung cancer. Int. J. Mol. Sci., 18, 860
https://doi.org/10.3390/ijms18060860.
pmid: 28555007
|
37 |
S. Lawn, , N. Krishna, , A. Pisklakova, , X. Qu, , D. A. Fenstermacher, , M. Fournier, , F. D. Vrionis, , N. Tran, , J. A. Chan, , R. S. Kenchappa, , et al. (2015) Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J. Biol. Chem., 290, 3814–3824
https://doi.org/10.1074/jbc.M114.599373.
pmid: 25538243
|
38 |
L. Meng, , B. Liu, , R. Ji, , X. Jiang, , X. Yan, and Y. Xin, (2019) Targeting the BDNF/TrkB pathway for the treatment of tumors. Oncol Lett, 17, 2031–2039
pmid: 30675270
|
39 |
A. Drilon, , S. Siena, , S. I. Ou, , M. Patel, , M. J. Ahn, , J. Lee, , T. M. Bauer, , A. F. Farago, , J. J. Wheler, , S. V. Liu, , et al. (2017) Safety and antitumor activity of the multitargeted pan-trk, ros1, and alk inhibitor entrectinib: combined results from two phase i trials (alka-372-001 and startrk-1). Cancer Discov., 7, 400–409
https://doi.org/10.1158/2159-8290.CD-16-1237.
pmid: 28183697
|
40 |
T. E. Heinen, , R. P. Dos Santos, , A. da Rocha, , M. P. Dos Santos, , P. L. Lopez, , M. A. Silva Filho, , B. K. Souza, , L. F. Rivero, , R. G. Becker, , L. J. Gregianin, , et al. (2016) Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma. Oncotarget, 7, 34860–34880
https://doi.org/10.18632/oncotarget.8992.
pmid: 27145455
|
41 |
B. C. Perry, , S. Wang, and M. D. Basson, (2010) Extracellular pressure stimulates adhesion of sarcoma cells via activation of focal adhesion kinase and akt. Am. J. Surg., 200, 610–614
https://doi.org/10.1016/j.amjsurg.2010.07.013.
pmid: 21056138
|
42 |
B. D. Crompton, , A. L. Carlton, , A. R. Thorner, , A. L. Christie, , J. Du, , M. L. Calicchio, , M. N. Rivera, , M. D. Fleming, , N. E. Kohl, , A. L. Kung, , et al. (2013) High-throughput tyrosine kinase activity profiling identifies FAK as a candidate therapeutic target in Ewing sarcoma. Cancer Res., 73, 2873–2883
https://doi.org/10.1158/0008-5472.CAN-12-1944.
pmid: 23536552
|
43 |
S. Wang, , E. E. Hwang,, R. Guha,, A. F. O’Neill,, N. Melong,, C. J. Veinotte,, A.S. Conway,, K. Wuerthele,, M. Shen,, C. McKnight, et al. (2019) High-throughput chemical screening identifies focal adhesion kinase and aurora kinase B inhibition as a synergistic treatment combination in ewing sarcoma. Clin. Cancer Res.,77
|
44 |
P. Pihlajamaa, , B. Sahu, , L. Lyly, , V. Aittomäki, , S. Hautaniemi, and O. A. Jänne, (2014) Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs. EMBO J., 33, 312–326
https://doi.org/10.1002/embj.201385895.
pmid: 24451200
|
45 |
S. Foersch, , M. Schindeldecker, , M. Keith, , K. E. Tagscherer, , A. Fernandez, , P. J. Stenzel, , S. Pahernik, , M. Hohenfellner, , P. Schirmacher, , W. Roth, , et al. (2017) Prognostic relevance of androgen receptor expression in renal cell carcinomas. Oncotarget, 8, 78545–78555
https://doi.org/10.18632/oncotarget.20827.
pmid: 29108248
|
46 |
H. Zhao, , J. T. Leppert, and D. M. Peehl, (2016) A protective role for androgen receptor in clear cell renal cell carcinoma based on mining tcga data. PLoS One, 11, e0146505
https://doi.org/10.1371/journal.pone.0146505.
pmid: 26814892
|
47 |
R. L. Grossman,, A. P. Heath,, V. Ferretti,, H. E. Varmus,, D.R. Lowy,, W. A. Kibbe, and L. M Staudt,. (2016) Toward a shared vision for cancer genomic data. N. Engl. J. Med., 375, 1109–1112
|
48 |
Y. Zhu, , P. Qiu, and Y. Ji, (2014) TCGA-assembler: open-source software for retrieving and processing TCGA data. Nat. Methods, 11, 599–600
https://doi.org/10.1038/nmeth.2956.
pmid: 24874569
|
49 |
L. Wei, , Z. Jin, , S. Yang, , Y. Xu, , Y. Zhu, and Y. Ji, (2018) TCGA-assembler 2: software pipeline for retrieval and processing of TCGA/CPTAC data. Bioinformatics, 34, 1615–1617
https://doi.org/10.1093/bioinformatics/btx812.
pmid: 29272348
|
50 |
G. Sales, , E. Calura, and C. Romualdi, (2018) graphite: GRAPH Interaction from pathway Topological Environment. R package version 1.26.1
|
51 |
N. Krämer, , J. Schäfer, and A.-L. Boulesteix, (2009) Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinformatics, 10, 384
https://doi.org/10.1186/1471-2105-10-384.
pmid: 19930695
|
52 |
S. Kim, (2015) ppcor: an r package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods, 22, 665–674
https://doi.org/10.5351/CSAM.2015.22.6.665.
pmid: 26688802
|
53 |
A. Shojaie, and G. Michailidis, (2010) Network enrichment analysis in complex experiments. Stat. Appl. Genet. Mol. Biol., 9, e22
https://doi.org/10.2202/1544-6115.1483.
pmid: 20597848
|
54 |
W. Chang, , J. Cheng,, J. J. Allaire,, Y. H. Xie, and J. McPherson, (2018) shiny: Web Application Framework for R. R package version 1.2.0
|
55 |
G. Csardi, and T. Nepusz, (2006) The igraph software package for complex network research. InterJournal, Complex Syst., 1695
|
56 |
B. V. Almende, B. Thieurmel, and T. Robert, (2018) visNetwork: Network Visualization using vis.js Library. R package version 2.0.4
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|