Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2020, Vol. 8 Issue (2): 130-142   https://doi.org/10.1007/s40484-019-0185-6
  本期目录
A pan-cancer integrative pathway analysis of multi-omics data
Henry Linder, Yuping Zhang()
Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
 全文: PDF(698 KB)   HTML
Abstract

Background: Multi-view -omics datasets offer rich opportunities for integrative analysis across genomic, transcriptomic, and epigenetic data platforms. Statistical methods are needed to rigorously implement current research on functional biology, matching the complex dynamics of systems genomic datasets.

Methods: We apply imputation for missing data and a structural, graph-theoretic pathway model to a dataset of 22 cancers across 173 signaling pathways. Our pathway model integrates multiple data platforms, and we test for differential activation between cancerous tumor and healthy tissue populations.

Results: Our pathway analysis reveals significant disturbance in signaling pathways that are known to relate to oncogenesis. We identify several pathways that suggest new research directions, including the Trk signaling and focal adhesion kinase activation pathways in sarcoma.

Conclusions: Our integrative analysis confirms contemporary research findings, which supports the validity of our findings. We implement an interactive data visualization for exploration of the pathway analyses, which is available online for public access.

Key wordsmulti-platform data integration    pathway analysis    imputation    cancer genomics    data visualization
收稿日期: 2019-07-04      出版日期: 2020-07-13
Corresponding Author(s): Yuping Zhang   
 引用本文:   
. [J]. Quantitative Biology, 2020, 8(2): 130-142.
Henry Linder, Yuping Zhang. A pan-cancer integrative pathway analysis of multi-omics data. Quant. Biol., 2020, 8(2): 130-142.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-019-0185-6
https://academic.hep.com.cn/qb/CN/Y2020/V8/I2/130
Cancer Code Sample sizes
Cancer Normal
Adrenocortical carcinoma ACC 92 5
Bladder urothelial carcinoma* BLCA 412 36
Breast invasive carcinoma* BRCA 1096 161
Cervical squamous cell carcinoma and
endocervical adenocarcinoma
CESC 308 8
Cholangiocarcinoma* CHOL 36 15
Colon adenocarcinoma* COAD 455 92
Lymphoid neoplasm diffuse large B-cell lymphoma DLBC 48 0
Esophageal carcinoma* ESCA 185 64
Glioblastoma multiform* GBM 586 31
Head and neck squamous cell carcinoma* HNSC 528 82
Kidney chromophobe renal cell carcinoma* KICH 66 57
Kidney renal clear cell carcinoma* KIRC 534 427
Kidney renal papillary cell carcinoma* KIRP 291 87
Brain lower grade glioma LGG 516 0
Liver hepatocellular carcinoma* LIHC 377 87
Lung adenocarcinoma* LUAD 519 179
Lung squamous cell carcinoma* LUSC 504 240
Mesothelioma MESO 87 1
Ovarian serous cystadenocarcinoma* OV 586 130
Pancreatic adenocarcinoma* PAAD 185 37
Pheochromocytoma and paraganglioma PCPG 179 5
Prostate adenocarcinoma* PRAD 500 117
Rectum adenocarcinoma* READ 167 17
Sarcoma* SARC 261 22
Skin cutaneous melanoma SKCM 104 3
Stomach adenocarcinoma* STAD 478 131
Testicular germ cell tumors TGCT 150 0
Thyroid carcinoma* THCA 507 99
Thymoma* THYM 124 12
Uterine corpus endometrial carcinoma* UCEC 545 51
Uterine carcinosarcoma UCS 57 6
Uveal melanoma UVM 80 0
Tab.1  
Fig.1  
Cancer Pathway
Kidney renal clear cell carcinoma Coregulation of androgen receptor activity
Ovarian serous cystadenocarcinoma C-MYB transcription factor network
Pancreatic adenocarcinoma Regulation of nuclear SMAD2/3 signaling
Sarcoma BCR signaling pathway
Sarcoma Beta1 integrin cell surface interactions
Sarcoma Ceramide signaling pathway
Sarcoma ErbB1 downstream signaling
Sarcoma Neurotrophic factor-mediated Trk receptor signaling
Sarcoma Signaling events mediated by focal adhesion kinase
Sarcoma TCR signaling in naïve CD4+ T cells
Sarcoma TCR signaling in naïve CD8+ T cells
Thymoma BCR signaling pathway
Thymoma ErbB1 downstream signaling
Thymoma TCR signaling in naïve CD4+ T cells
Tab.2  
Fig.2  
1 D.S., Chandrashekar, B. Bashel,, S. Akshaya,, H. Balasubramanya,, C.J. Creighton,, I. Ponce-Rodriguez,, B. Chakravarthi, and S. Varambally, (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 19, 649–658
2 Y. Zhang, , Z. Ouyang, and H. Zhao, (2017) A statistical framework for data integration through graphical models with application to cancer genomics. Ann. Appl. Stat., 11, 161–184
https://doi.org/10.1214/16-AOAS998. pmid: 30956747
3 Cancer Genome Atlas Research Network (2017) Integrated genomic and molecular characterization of cervical cancer. Nature, 543, 378–384
https://doi.org/10.1038/nature21386. pmid: 28112728
4 R. Shen, , A. B. Olshen, and M. Ladanyi, (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics, 25, 2906–2912
https://doi.org/10.1093/bioinformatics/btp543. pmid: 19759197
5 A. Subramanian, , P. Tamayo, , V. K. Mootha,, S. Mukherjee,, B. L. Ebert,, M. A. Gillette,, A. Paulovich,, S. L. Pomeroy,, T. R. Golub,, E. S. Lander, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 102,15545–15550
6 J. Yan, , S. L. Risacher,, L. Shen, and A. J. Saykin, (2017) Network approaches to systems biology analysis of complex disease: integrative methods for multi -omics data. Brief. Bioinform., 19, 1370–1381
pmid: 28679163
7 Z. Ge, , J. S. Leighton, , Y. Wang, , X. Peng, , Z. Chen, , H. Chen, , Y. Sun, , F. Yao, , J. Li, , H. Zhang, , et al. (2018) Integrated genomic analysis of the ubiquitin pathway across cancer types. Cell Reports, 23, 213–226.e3
https://doi.org/10.1016/j.celrep.2018.03.047. pmid: 29617661
8 J. K. Huang,, D.E. Carlin,, M. K. Yu,, W. Zhang,, J. F. Kreisberg,, P. Tamayo, and T. Ideker, (2018) Systematic evaluation of molecular networks for discovery of disease genes. Cell Syst., 6, 484–495
9 A. Baryshnikova, (2016) Systematic functional annotation and visualization of biological networks. Cell Syst., 2, 412–421
https://doi.org/10.1016/j.cels.2016.04.014. pmid: 27237738
10 C. J. Vaske, , S. C. Benz, , J. Z. Sanborn, , D. Earl, , C. Szeto, , J. Zhu, , D. Haussler, and J. M. Stuart, (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using paradigm. Bioinformatics, 26, i237–i245
https://doi.org/10.1093/bioinformatics/btq182
11 J. D. Campbell, , C. Yau, , R. Bowlby, , Y. Liu, , K. Brennan, , H. Fan, , A. M. Taylor, , C. Wang, , V. Walter, , R. Akbani, , et al., (2018) Genomic, pathway network, and immunologic features distinguishing squamous carcinomas. Cell Reports, 23, 194–212.e6
https://doi.org/10.1016/j.celrep.2018.03.063. pmid: 29617660
12 J. Ma, , A. Shojaie, and G. Michailidis, (2016) Network-based pathway enrichment analysis with incomplete network information. Bioinformatics, 32, 3165–3174
https://doi.org/10.1093/bioinformatics/btw410. pmid: 27357170
13 D. Robinson, , E. M. Van Allen, , Y. M. Wu, , N. Schultz, , R. J. Lonigro, , J. M. Mosquera, , B. Montgomery, , M. E. Taplin, , C. C. Pritchard, , G. Attard, , et al. (2015) Integrative clinical genomics of advanced prostate cancer. Cell, 161, 1215–1228
https://doi.org/10.1016/j.cell.2015.05.001. pmid: 26000489
14 F. Sanchez-Vega, , M. Mina, , J. Armenia, , W. K. Chatila, , A. Luna, , K. C. La, , S. Dimitriadoy, , D. L. Liu, , H. S. Kantheti, , S. Saghafinia, , et al. (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell, 173, 321–337.e10
https://doi.org/10.1016/j.cell.2018.03.035. pmid: 29625050
15 E. Bonnet, , L. Calzone, and T. Michoel, (2015) Integrative multi -omics module network inference with Lemon-Tree. PLOS Comput. Biol., 11, e1003983
https://doi.org/10.1371/journal.pcbi.1003983. pmid: 25679508
16 J. Hadfield, , N. J. Croucher, , R. J. Goater, , K. Abudahab, , D. M. Aanensen, and S. R. Harris, (2017) Phandango: an interactive viewer for bacterial population genomics. Bioinformatics, 34, 292–293
https://doi.org/10.1093/bioinformatics/btx610.\
17 , H. Wickham (2016) ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag
18 T. Yin, , D. Cook, and M. Lawrence, (2012) ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol., 13, R77
https://doi.org/10.1186/gb-2012-13-8-r77. pmid: 22937822
19 P. Stempor, and J. Ahringer, (2016) SeqPlots–Interactive software for exploratory data analyses, pattern discovery and visualization in genomics. Wellcome Open Res., 1, 14
https://doi.org/10.12688/wellcomeopenres.10004.1. pmid: 27918597
20 H. Linder, and Y. Zhang, (2019) Iterative integrated imputation for missing data and pathway models with applications to breast cancer subtypes. Comm. Statis. Appl. Meth., 26, 411–430
https://doi.org/10.29220/CSAM.2019.26.4.411
21 Y. Zhang, ,H. M. Linder, Shojaie, A. Ouyang,, Z. Shen,, R. Baggerly,, K.A. Baladandayuthapani, and V. H. Zhao, (2017) Dissecting pathway disturbances using network topology and multi-platform genomics data. Stat. Biosci., 10, 1–21
22 K. Tomczak, , P. Czerwińska, and M. Wiznerowicz, (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Pozn.), 19, A68–A77
https://doi.org/10.5114/wo.2014.47136. pmid: 25691825
23 C.F. Schaefer, , K. Anthony,, S. Krupa, , J. Buchoff, , M. Day, , T. Hannay, and K. H. Buetow, (2008) Pid: the pathway interaction database. Nucleic acids research, 37 (suppl), D674–D679
24 T. Cai, , T. T. Cai, and A. Zhang, (2016) Structured matrix completion with applications to genomic data integration. J. Am. Stat. Assoc., 111, 621–633
https://doi.org/10.1080/01621459.2015.1021005. pmid: 28042188
25 A. Shojaie, and G. Michailidis, (2009) Analysis of gene sets based on the underlying regulatory network. J. Comput. Biol., 16, 407–426
https://doi.org/10.1089/cmb.2008.0081. pmid: 19254181
26 Y. Benjamini, and Y. Hochberg, (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289–300
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
27 N. Fowler, and E. Davis, (2013) Targeting B-cell receptor signaling: changing the paradigm. Hematology, 553–560
https://doi.org/10.1182/asheducation-2013.1.553. pmid: 24319231
28 J. A. Burger, and A. Wiestner, (2018) Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat. Rev. Cancer, 18, 148–167
https://doi.org/10.1038/nrc.2017.121. pmid: 29348577
29 R. Roskoski, Jr. (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res., 79, 34–74
https://doi.org/10.1016/j.phrs.2013.11.002. pmid: 24269963
30 S. B. Jakowlew, (2006) Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev., 25, 435–457
https://doi.org/10.1007/s10555-006-9006-2. pmid: 16951986
31 J. Massagué, (2008) TGFbeta in Cancer. Cell, 134, 215–230
https://doi.org/10.1016/j.cell.2008.07.001. pmid: 18662538
32 I. Fabregat, , J. Fernando, , J. Mainez, and P. Sancho, (2014) TGF-beta signaling in cancer treatment. Curr. Pharm. Des., 20, 2934–2947
https://doi.org/10.2174/13816128113199990591. pmid: 23944366
33 P. Iengar, (2018) Identifying pathways affected by cancer mutations. Genomics, 110, 318–328
34 Leiserson, M. D. M., Blokh, D., Sharan, R. and Raphael. B. J., (2013) Simultaneous identification of multiple driver pathways in cancer. PLOS Comput. Biol., 9, e1003054
35 C. Barletta, , D. Lazzaro, , R. Prosperi Porta, , U. Testa, , F. Grignani, , R. M. Ragusa, , R. Leone, , A. Patella, , L. Carenza, and C. Peschle, (1992) C-MYB activation and the pathogenesis of ovarian cancer. Eur. J. Gynaecol. Oncol., 13, 53–59
pmid: 1547794
36 Y. Jin, , H. Zhu, , W. Cai, , X. Fan, , Y. Wang, , Y. Niu, , F. Song, and Y. Bu, (2017) B-myb is up-regulated and promotes cell growth and motility in non-small cell lung cancer. Int. J. Mol. Sci., 18, 860
https://doi.org/10.3390/ijms18060860. pmid: 28555007
37 S. Lawn, , N. Krishna, , A. Pisklakova, , X. Qu, , D. A. Fenstermacher, , M. Fournier, , F. D. Vrionis, , N. Tran, , J. A. Chan, , R. S. Kenchappa, , et al. (2015) Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J. Biol. Chem., 290, 3814–3824
https://doi.org/10.1074/jbc.M114.599373. pmid: 25538243
38 L. Meng, , B. Liu, , R. Ji, , X. Jiang, , X. Yan, and Y. Xin, (2019) Targeting the BDNF/TrkB pathway for the treatment of tumors. Oncol Lett, 17, 2031–2039
pmid: 30675270
39 A. Drilon, , S. Siena, , S. I. Ou, , M. Patel, , M. J. Ahn, , J. Lee, , T. M. Bauer, , A. F. Farago, , J. J. Wheler, , S. V. Liu, , et al. (2017) Safety and antitumor activity of the multitargeted pan-trk, ros1, and alk inhibitor entrectinib: combined results from two phase i trials (alka-372-001 and startrk-1). Cancer Discov., 7, 400–409
https://doi.org/10.1158/2159-8290.CD-16-1237. pmid: 28183697
40 T. E. Heinen, , R. P. Dos Santos, , A. da Rocha, , M. P. Dos Santos, , P. L. Lopez, , M. A. Silva Filho, , B. K. Souza, , L. F. Rivero, , R. G. Becker, , L. J. Gregianin, , et al. (2016) Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma. Oncotarget, 7, 34860–34880
https://doi.org/10.18632/oncotarget.8992. pmid: 27145455
41 B. C. Perry, , S. Wang, and M. D. Basson, (2010) Extracellular pressure stimulates adhesion of sarcoma cells via activation of focal adhesion kinase and akt. Am. J. Surg., 200, 610–614
https://doi.org/10.1016/j.amjsurg.2010.07.013. pmid: 21056138
42 B. D. Crompton, , A. L. Carlton, , A. R. Thorner, , A. L. Christie, , J. Du, , M. L. Calicchio, , M. N. Rivera, , M. D. Fleming, , N. E. Kohl, , A. L. Kung, , et al. (2013) High-throughput tyrosine kinase activity profiling identifies FAK as a candidate therapeutic target in Ewing sarcoma. Cancer Res., 73, 2873–2883
https://doi.org/10.1158/0008-5472.CAN-12-1944. pmid: 23536552
43 S. Wang, , E. E. Hwang,, R. Guha,, A. F. O’Neill,, N. Melong,, C. J. Veinotte,, A.S. Conway,, K. Wuerthele,, M. Shen,, C. McKnight, et al. (2019) High-throughput chemical screening identifies focal adhesion kinase and aurora kinase B inhibition as a synergistic treatment combination in ewing sarcoma. Clin. Cancer Res.,77
44 P. Pihlajamaa, , B. Sahu, , L. Lyly, , V. Aittomäki, , S. Hautaniemi, and O. A. Jänne, (2014) Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs. EMBO J., 33, 312–326
https://doi.org/10.1002/embj.201385895. pmid: 24451200
45 S. Foersch, , M. Schindeldecker, , M. Keith, , K. E. Tagscherer, , A. Fernandez, , P. J. Stenzel, , S. Pahernik, , M. Hohenfellner, , P. Schirmacher, , W. Roth, , et al. (2017) Prognostic relevance of androgen receptor expression in renal cell carcinomas. Oncotarget, 8, 78545–78555
https://doi.org/10.18632/oncotarget.20827. pmid: 29108248
46 H. Zhao, , J. T. Leppert, and D. M. Peehl, (2016) A protective role for androgen receptor in clear cell renal cell carcinoma based on mining tcga data. PLoS One, 11, e0146505
https://doi.org/10.1371/journal.pone.0146505. pmid: 26814892
47 R. L. Grossman,, A. P. Heath,, V. Ferretti,, H. E. Varmus,, D.R. Lowy,, W. A. Kibbe, and L. M Staudt,. (2016) Toward a shared vision for cancer genomic data. N. Engl. J. Med., 375, 1109–1112
48 Y. Zhu, , P. Qiu, and Y. Ji, (2014) TCGA-assembler: open-source software for retrieving and processing TCGA data. Nat. Methods, 11, 599–600
https://doi.org/10.1038/nmeth.2956. pmid: 24874569
49 L. Wei, , Z. Jin, , S. Yang, , Y. Xu, , Y. Zhu, and Y. Ji, (2018) TCGA-assembler 2: software pipeline for retrieval and processing of TCGA/CPTAC data. Bioinformatics, 34, 1615–1617
https://doi.org/10.1093/bioinformatics/btx812. pmid: 29272348
50 G. Sales, , E. Calura, and C. Romualdi, (2018) graphite: GRAPH Interaction from pathway Topological Environment. R package version 1.26.1
51 N. Krämer, , J. Schäfer, and A.-L. Boulesteix, (2009) Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinformatics, 10, 384
https://doi.org/10.1186/1471-2105-10-384. pmid: 19930695
52 S. Kim, (2015) ppcor: an r package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods, 22, 665–674
https://doi.org/10.5351/CSAM.2015.22.6.665. pmid: 26688802
53 A. Shojaie, and G. Michailidis, (2010) Network enrichment analysis in complex experiments. Stat. Appl. Genet. Mol. Biol., 9, e22
https://doi.org/10.2202/1544-6115.1483. pmid: 20597848
54 W. Chang, , J. Cheng,, J. J. Allaire,, Y. H. Xie, and J. McPherson, (2018) shiny: Web Application Framework for R. R package version 1.2.0
55 G. Csardi, and T. Nepusz, (2006) The igraph software package for complex network research. InterJournal, Complex Syst., 1695
56 B. V. Almende, B. Thieurmel, and T. Robert, (2018) visNetwork: Network Visualization using vis.js Library. R package version 2.0.4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed