|
|
|
Recent advances and application in whole-genome multiple displacement amplification |
Naiyun Long, Yi Qiao, Zheyun Xu, Jing Tu( ), Zuhong Lu( ) |
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China |
|
|
Abstract: Background: The extremely small amount of DNA in a cell makes it difficult to study the whole genome of single cells, so whole-genome amplification (WGA) is necessary to increase the DNA amount and enable downstream analyses. Multiple displacement amplification (MDA) is the most widely used WGA technique. Results: Compared with amplification methods based on PCR and other methods, MDA renders high-quality DNA products and better genome coverage by using phi29 DNA polymerase. Moreover, recently developed advanced MDA technologies such as microreactor MDA, emulsion MDA, and micro-channel MDA have improved amplification uniformity. Additionally, the development of other novel methods such as TruePrime WGA allows for amplification without primers. Conclusion: Here, we reviewed a selection of recently developed MDA methods, their advantages over other WGA methods, and improved MDA-based technologies, followed by a discussion of future perspectives. With the continuous development of MDA and the successive update of detection technologies, MDA will be applied in increasingly more fields and provide a solid foundation for scientific research. |
Key words:
whole genome amplification
multiple displacement amplification
improved MDA-based approaches
|
收稿日期: 2020-03-26
出版日期: 2020-12-24
|
Corresponding Author(s):
Jing Tu,Zuhong Lu
|
1 |
O. Feinerman, , J. Veiga, , J. R. Dorfman, , R. N. Germain, and G. Altan-Bonnet, (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science, 321, 1081–1084
https://doi.org/10.1126/science.1158013
pmid: 18719282
|
2 |
T. Hoey, (2010) Drug resistance, epigenetics, and tumor cell heterogeneity. Sci. Transl. Med., 2, 28ps19
https://doi.org/10.1126/scitranslmed.3001056
pmid: 20410528
|
3 |
L. Yan, , L. Huang, , L. Xu, , J. Huang, , F. Ma, , X. Zhu, , Y. Tang, , M. Liu, , Y. Lian, , P. Liu, , et al. (2015) Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc. Natl. Acad. Sci. U.S.A., 112, 15964–15969
https://doi.org/10.1073/pnas.1523297113
pmid: 26712022
|
4 |
X. Ni, , M. Zhuo, , Z. Su, , J. Duan, , Y. Gao, , Z. Wang, , C. Zong, , H. Bai, , A. R. Chapman, , J. Zhao, , et al. (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc. Natl. Acad. Sci. USA, 110, 21083–21088
https://doi.org/10.1073/pnas.1320659110
pmid: 24324171
|
5 |
L. Zhang, , X. Cui, , K. Schmitt, , R. Hubert, , W. Navidi, , and N. Arnheim, (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl. Acad. Sci. USA, 89, 5847–5851
|
6 |
H. Telenius, , N. P. Carter, , C. E. Bebb, , M. Nordenskjöld, , B. A. J. Ponder, and A. Tunnacliffe, (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics, 13, 718–725
https://doi.org/10.1016/0888-7543(92)90147-K
pmid: 1639399
|
7 |
P. M. Lizardi, , X. Huang, , Z. Zhu, , P. Bray-Ward, , D. C. Thomas, and D. C. Ward, (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet., 19, 225–232
https://doi.org/10.1038/898
pmid: 9662393
|
8 |
F. B. Dean, , S. Hosono, , L. Fang, , X. Wu, , A. F. Faruqi, , P. Bray-Ward, , Z. Sun, , Q. Zong, , Y. Du, , J. Du, , et al. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA, 99, 5261–5266
https://doi.org/10.1073/pnas.082089499
pmid: 11959976
|
9 |
C. Zong, , S. Lu, , A. R. Chapman, and X. S. Xie, (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338, 1622–1626
https://doi.org/10.1126/science.1229164
pmid: 23258894
|
10 |
C. Chen, , D. Xing, , L. Tan, , H. Li, , G. Zhou, , L. Huang, and X. S. Xie, (2017) Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science, 356, 189–194
https://doi.org/10.1126/science.aak9787
pmid: 28408603
|
11 |
L. Huang, , F. Ma, , A. Chapman, , S. Lu, and X. S. Xie, (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu. Rev. Genomics Hum. Genet., 16, 79–102
https://doi.org/10.1146/annurev-genom-090413-025352
pmid: 26077818
|
12 |
C. Gawad, , W. Koh, and S. R. Quake, (2016) Single-cell genome sequencing: current state of the science. Nat. Rev. Genet., 17, 175–188
https://doi.org/10.1038/nrg.2015.16
pmid: 26806412
|
13 |
J. C. Detter, , J. M. Jett, , S. M. Lucas, , E. Dalin, , A. R. Arellano, , M. Wang, , J. R. Nelson, , J. Chapman, , Y. Lou, , D. Rokhsar, , et al. (2002) Isothermal strand-displacement amplification applications for high-throughput genomics. Genomics, 80, 691–698
https://doi.org/10.1006/geno.2002.7020
pmid: 12523365
|
14 |
Y. Fu, , C. Li, , S. Lu, , W. Zhou, , F. Tang, , X. S. Xie, and Y. Huang, (2015) Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc. Natl. Acad. Sci. USA, 112, 11923–11928
https://doi.org/10.1073/pnas.1513988112
pmid: 26340991
|
15 |
K. N. Ballantyne, , R. A. H. van Oorschot, , R. John Mitchell, and I. Koukoulas, (2006) Molecular crowding increases the amplification success of multiple displacement amplification and short tandem repeat genotyping. Anal. Biochem., 355, 298–303
https://doi.org/10.1016/j.ab.2006.04.039
pmid: 16737679
|
16 |
G. de Cesare, , A. Nascetti, and D. Caputo, (2015) Amorphous silicon p-i-n structure acting as light and temperature sensor. Sensors (Basel), 15, 12260–12272
https://doi.org/10.3390/s150612260
pmid: 26016913
|
17 |
B. B. Bruijns, , F. Costantini, , N. Lovecchio, , R. M. Tiggelaar, , G. Di Timoteo, , A. Nascetti, , G. de Cesare, , J. G. E. Gardeniers, and D. Caputo, (2019) On-chip real-time monitoring of multiple displacement amplification of DNA. Sens. Actuators B Chem., 293, 16–22
https://doi.org/10.1016/j.snb.2019.04.144
|
18 |
X. Y. Li, , Y. C. Du, , Y. P. Zhang, and D. M. Kong, (2017) Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Sci. Rep., 7, 6263
https://doi.org/10.1038/s41598-017-06594-1
pmid: 28740223
|
19 |
B. J. Toley, , I. Covelli, , Y. Belousov, , S. Ramachandran, , E. Kline, , N. Scarr, , N. Vermeulen, , W. Mahoney, , B. R. Lutz, and P. Yager, (2015) Isothermal strand displacement amplification (iSDA): a rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis. Analyst (Lond.), 140, 7540–7549
https://doi.org/10.1039/C5AN01632K
pmid: 26393240
|
20 |
L. Blanco, , A. Bernad, , J. M. Lázaro, , G. Martín, , C. Garmendia, and M. Salas, (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem., 264, 8935–8940
pmid: 2498321
|
21 |
A. H. Handyside, , M. D. Robinson, , R. J. Simpson, , M. B. Omar, , M. A. Shaw, , J. G. Grudzinskas, and A. Rutherford, (2004) Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol. Hum. Reprod., 10, 767–772
https://doi.org/10.1093/molehr/gah101
pmid: 15322224
|
22 |
J. Banér, , M. Nilsson, , M. Mendel-Hartvig, and U. Landegren, (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res., 26, 5073–5078
https://doi.org/10.1093/nar/26.22.5073
pmid: 9801302
|
23 |
T. Krzywkowski, , M. Kühnemund, , D. Wu, and M. Nilsson, (2018) Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res., 46, 3625–3632
https://doi.org/10.1093/nar/gky190
pmid: 29554297
|
24 |
S. Coskun, and O. Alsmadi, (2007) Whole genome amplification from a single cell: a new era for preimplantation genetic diagnosis. Prenat. Diagn., 27, 297–302
https://doi.org/10.1002/pd.1667
pmid: 17278176
|
25 |
C. Spits, , C. Le Caignec, , M. De Rycke, , L. Van Haute, , A. Van Steirteghem, , I. Liebaers, and K. Sermon, (2006) Optimization and evaluation of single-cell whole-genome multiple displacement amplification. Hum. Mutat., 27, 496–503
https://doi.org/10.1002/humu.20324
pmid: 16619243
|
26 |
A. del Prado, , I. Rodríguez, , J. M. Lázaro, , M. Moreno-Morcillo, , M. de Vega, and M. Salas, (2019) New insights into the coordination between the polymerization and 3′-5′ exonuclease activities in f29 DNA polymerase. Sci. Rep., 9, 923
https://doi.org/10.1038/s41598-018-37513-7.
pmid: 30696917
|
27 |
M. Xu, (2015) Patent CN 104560950A
|
28 |
W. Huang, , H. Cai, , S. Wei, , X. Bo, and F. Li, (2016) MDAGenera: an efficient and accurate simulator for multiple displacement amplification. In: Intelligent Computing Theories and Application, Huang, D.S., Bevilacqua, V., Premaratne, P. (eds.),pp. 258–267. Springer, Cham
|
29 |
E. Tenaglia, , Y. Imaizumi, , Y. Miyahara, and C. Guiducci, (2018) Isothermal multiple displacement amplification of DNA templates in minimally buffered conditions using phi29 polymerase. Chem. Commun. (Camb.), 54, 2158–2161
https://doi.org/10.1039/C7CC09609G
pmid: 29431761
|
30 |
G. Wang, , C. Brennan, , M. Rook, , J. L. Wolfe, , C. Leo, , L. Chin, , H. Pan, , W. H. Liu, , B. Price, and G. M. Makrigiorgos, (2004) Balanced-PCR amplification allows unbiased identification of genomic copy changes in minute cell and tissue samples. Nucleic Acids Res., 32, e76
https://doi.org/10.1093/nar/gnh070
pmid: 15155823
|
31 |
A. W. Bergen, , K. A. Haque, , Y. Qi, , M. B. Beerman, , M. Garcia-Closas, , N. Rothman, and S. J. Chanock, (2005) Comparison of yield and genotyping performance of multiple displacement amplification and OmniPlex whole genome amplified DNA generated from multiple DNA sources. Hum. Mutat., 26, 262–270
https://doi.org/10.1002/humu.20213
pmid: 16086324
|
32 |
L. Lovmar, , M. Fredriksson, , U. Liljedahl, , S. Sigurdsson, and A. C. Syvänen, (2003) Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA. Nucleic Acids Res., 31, e129
https://doi.org/10.1093/nar/gng129
pmid: 14576329
|
33 |
T. L. Hawkins, , J. C. Detter, and P. M. Richardson, (2002) Whole genome amplification–applications and advances. Curr. Opin. Biotechnol., 13, 65–67
https://doi.org/10.1016/S0958-1669(02)00286-0
pmid: 11849960
|
34 |
R. S. Lasken, , M. Egholm, and O. A. Alsmadi, (2004) Patent US 9487823B2
|
35 |
G. M. G. Theunissen, , B. Rolf, , A. Gibb, and R. Jäger, (2017) DNA profiling of sperm cells by using micromanipulation and whole genome amplification. Forensic Sci. International. Genet. Suppl. Ser., 6, e497–e499.
https://doi.org/10.1016/j.fsigss.2017.09.183
|
36 |
R. S. Lasken, (2013) Single-cell sequencing in its prime. Nat. Biotechnol., 31, 211–212
https://doi.org/10.1038/nbt.2523
pmid: 23471069
|
37 |
C. F. de Bourcy, , I. De Vlaminck, , J. N. Kanbar, , J. Wang, , C. Gawad, and S. R. Quake, (2014) A quantitative comparison of single-cell whole genome amplification methods. PLoS One, 9, e105585
https://doi.org/10.1371/journal.pone.0105585
pmid: 25136831
|
38 |
W. Liu, , H. Zhang, , D. Hu, , S. Lu, and X. Sun, (2018) The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels. J. Clin. Lab. Anal., 32, e22267
https://doi.org/10.1002/jcla.22267
pmid: 28548214
|
39 |
J. del Rey, , F. Vidal, , L. Ramírez, , N. Borràs, , I. Corrales, , I. Garcia, , O. Martinez-Pasarell, , S. F. Fernandez, , R. Garcia-Cruz, , A. Pujol, , et al. (2018) Novel Double Factor PGT strategy analyzing blastocyst stage embryos in a single NGS procedure. PLoS One, 13, e0205692
https://doi.org/10.1371/journal.pone.0205692
pmid: 30332465
|
40 |
F. He, , W. Zhou, , R. Cai, , T. Yan, and X. Xu, (2018) Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and β-thalassemia genotyping. J. Hum. Genet., 63, 407–416
https://doi.org/10.1038/s10038-018-0411-5
pmid: 29440707
|
41 |
C. Li, , Z. Yu, , Y. Fu, , Y. Pang, and Y. Huang, (2017) Single-cell-based platform for copy number variation profiling through digital counting of amplified genomic DNA fragments. ACS Appl. Mater. Interfaces, 9, 13958–13964
https://doi.org/10.1021/acsami.7b03146
pmid: 28337907
|
42 |
X. Pan, and X. Liang, (2014) Principle of whole genome amplification technology and its progress. Biotechnology Bulletin, 12, 47–54, in Chinese
|
43 |
Y. Hou, , W. Fan, , L. Yan, , R. Li, , Y. Lian, , J. Huang, , J. Li, , L. Xu, , F. Tang, , X. S. Xie, , et al. (2013) Genome analyses of single human oocytes. Cell, 155, 1492–1506
https://doi.org/10.1016/j.cell.2013.11.040
pmid: 24360273
|
44 |
W. K. Chu, , P. Edge, , H. S. Lee, , V. Bansal, , V. Bafna, , X. Huang, and K. Zhang, (2017) Ultraaccurate genome sequencing and haplotyping of single human cells. Proc. Natl. Acad. Sci. U.S.A., 114, 12512–12517
https://doi.org/10.1073/pnas.1707609114
pmid: 29078313
|
45 |
P. C. Blainey, and S. R. Quake, (2011) Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res., 39, e19
https://doi.org/10.1093/nar/gkq1074
pmid: 21071419
|
46 |
W. Wang, , Y. Ren, , Y. Lu, , Y. Xu, , S. D. Crosby, , A. M. Di Bisceglie, and X. Fan, (2017) Template-dependent multiple displacement amplification for profiling human circulating RNA. Biotechniques, 63, 21–27
https://doi.org/10.2144/000114566
pmid: 28701144
|
47 |
A. Guria, , K. Velayudha Vimala Kumar, , N. Srikakulam, , A. Krishnamma, , S. Chanda, , S. Sharma, , X. Fan, and G. Pandi, (2019) Circular RNA profiling by Illumina sequencing via template-dependent multiple displacement amplification. BioMed Res. Int., 2019, 2756516
https://doi.org/10.1155/2019/2756516
pmid: 30834258
|
48 |
Á. J. Picher, , B. Budeus, , O. Wafzig, , C. Krüger, , S. García-Gémez, , M. I. Martínez-Jimónez, , A. Díaz-Talavera, , D. Weber, , L. Blanco, and A. Schneider, (2016) TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol. Nat. Commun., 7, 13296
https://doi.org/10.1038/ncomms13296
pmid: 27897270
|
49 |
C. Rinke, , P. Schwientek, , A. Sczyrba, , N. N. Ivanova, , I. J. Anderson, , J. F. Cheng, , A. Darling, , S. Malfatti, , B. K. Swan, , E. A. Gies, , et al. (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499, 431–437
https://doi.org/10.1038/nature12352
pmid: 23851394
|
50 |
R. Stepanauskas, , E. A. Fergusson, , J. Brown, , N. J. Poulton, , B. Tupper, , J. M. Labonté, , E. D. Becraft, , J. M. Brown, , M. G. Pachiadaki, , T. Povilaitis, , et al. (2017) Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun., 8, 84
https://doi.org/10.1038/s41467-017-00128-z
pmid: 28729688
|
51 |
C. Gawad. , , J. Easton, and V. Gonzalez-pena, (2019) Patent WO 2019/148119 A1
|
52 |
Y. Marcy, , T. Ishoey, , R. S. Lasken, , T. B. Stockwell, , B. P. Walenz, , A. L. Halpern, , K. Y. Beeson, , S. M. D. Goldberg, and S. R. Quake, (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet., 3, 1702–1708
https://doi.org/10.1371/journal.pgen.0030155
pmid: 17892324
|
53 |
J. Gole, , A. Gore, , A. Richards, , Y. J. Chiu, , H. L. Fung, , D. Bushman, , H. I. Chiang, , J. Chun, , Y. H. Lo, and K. Zhang, (2013) Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat. Biotechnol., 31, 1126–1132
https://doi.org/10.1038/nbt.2720
pmid: 24213699
|
54 |
M. Hosokawa, , Y. Nishikawa, , M. Kogawa, and H. Takeyama, (2017) Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Sci. Rep., 7, 5111–5199
https://doi.org/10.1038/s41598-017-05436-4
pmid: 28701744
|
55 |
A. M. Sidore, , F. Lan, , S. W. Lim, and A. R. Abate, (2016) Enhanced sequencing coverage with digital droplet multiple displacement amplification. Nucleic Acids Res., 44, e66
https://doi.org/10.1093/nar/gkv1493
pmid: 26704978
|
56 |
M. Rhee, , Y. K. Light, , R. J. Meagher, and A. K. Singh, (2016) Digital Droplet Multiple Displacement Amplification (ddMDA) for whole genome sequencing of limited DNA samples. PLoS One, 11, e0153699
https://doi.org/10.1371/journal.pone.0153699
pmid: 27144304
|
57 |
Z. Chen, , Y. Fu, , F. Zhang, , L. Liu,, , N. Zhang, , D. Zhou, , J. Yang, , Y. Pang, and Y. Huang, (2016) Spinning micropipette liquid emulsion generator for single cell whole genome amplification. Lab Chip, 16, 4512–4516
https://doi.org/10.1039/C6LC01084A
pmid: 27775138
|
58 |
Y. Fu, , F. Zhang, , X. Zhang, , J. Yin, , M. Du, , M. Jiang, , L. Liu, , J. Li, , Y. Huang, and J. Wang, (2019) High-throughput single-cell whole-genome amplification through centrifugal emulsification and eMDA. Commun. Biol., 2, 147
https://doi.org/10.1038/s42003-019-0401-y
pmid: 31044172
|
59 |
S. C. Kim, , G. Premasekharan, , I. C. Clark, , H. B. Gemeda, , P. L. Paris, and A. R. Abate, (2017) Measurement of copy number variation in single cancer cells using rapid-emulsification digital droplet MDA. Microsyst. Nanoeng., 3, 17018
https://doi.org/10.1038/micronano.2017.18
pmid: 30147985
|
60 |
Z. Chen, , P. Liao, , F. Zhang, , M. Jiang, , Y. Zhu, and Y. Huang, (2017) Centrifugal micro-channel array droplet generation for highly parallel digital PCR. Lab Chip, 17, 235–240
https://doi.org/10.1039/C6LC01305H
pmid: 28009866
|
61 |
J. Li, , N. Lu, , X. Shi, , Y. Qiao, , L. Chen, , M. Duan, , Y. Hou, , Q. Ge, , Y. Tao, , J. Tu, , et al. (2017) 1D-reactor decentralized MDA for uniform and accurate whole genome amplification. Anal. Chem., 89, 10147–10152
https://doi.org/10.1021/acs.analchem.7b02183
pmid: 28853542
|
62 |
J. Li, , N. Lu, , Y. Tao, , M. Duan,, , Y. Qiao, , Y. Xu, , Q. Ge, , C. Bi, , J. Fu, , J. Tu, , et al. (2018) Accurate and sensitive single-cell-level detection of copy number variations by micro-channel multiple displacement amplification (mcMDA). Nanoscale, 10, 17933–17941
https://doi.org/10.1039/C8NR04917C
pmid: 30226245
|
63 |
D. Zhu, , Y. Yan, , P. Lei, , B. Shen, , W. Cheng, , H. Ju, and S. Ding, (2014) A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA-AuNPs probe. Anal. Chim. Acta, 846, 44–50
https://doi.org/10.1016/j.aca.2014.07.024
pmid: 25220140
|
64 |
R. M. Bowers, , N. C. Kyrpides, , R. Stepanauskas, , M. Harmon-Smith, , D. Doud, , T. B. K. Reddy, , F. Schulz, , J. Jarett, , A. R. Rivers, , E. A. Eloe-Fadrosh, , et al. (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol., 35, 725–731
https://doi.org/10.1038/nbt.3893
pmid: 28787424
|
65 |
Y. Liu, , J. Yao, and M. Walther-Antonio, (2019) Whole genome amplification of single epithelial cells dissociated from snap-frozen tissue samples in microfluidic platform. Biomicrofluidics, 13, 034109
https://doi.org/10.1063/1.5090235
pmid: 31149320
|
66 |
M. Chen, , J. Zhang, , J. Zhao, , T. Chen, , Z. Liu, , F. Cheng, , Q. Fan, and J. Yan, (2020) Comparison of CE- and MPS-based analyses of forensic markers in a single cell after whole genome amplification. Forensic Sci. Int. Genet., 45, 102211
https://doi.org/10.1016/j.fsigen.2019.102211
pmid: 31812097
|
67 |
B. Bruijns, , A. Veciana, , R. Tiggelaar, and H. Gardeniers, (2019) Cyclic olefin copolymer microfluidic devices for forensic applications. Biosensors (Basel), 9, 85
https://doi.org/10.3390/bios9030085
pmid: 31277382
|
68 |
K. A. Lipinski, , L. J. Barber, , M. N. Davies, , M. Ashenden, , A. Sottoriva, and M. Gerlinger, (2016) Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer, 2, 49–63
https://doi.org/10.1016/j.trecan.2015.11.003
pmid: 26949746
|
69 |
X. Xu, , Y. Hou, , X. Yin, , L. Bao, , A. Tang, , L. Song, , F. Li, , S. Tsang, , K. Wu,, , H. Wu, , et al. (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 148, 886–895
https://doi.org/10.1016/j.cell.2012.02.025
pmid: 22385958
|
70 |
Y. Hou, , L. Song, , P. Zhu, , B. Zhang, , Y. Tao, , X. Xu, , F. Li, , K. Wu, , J. Liang, , D. Shao, , et al. (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148, 873–885
https://doi.org/10.1016/j.cell.2012.02.028
pmid: 22385957
|
71 |
Y. Wang, , J. Waters, , M. L. Leung, , A. Unruh, , W. Roh, , X. Shi, , K. Chen, , P. Scheet, , S. Vattathil, , H. Liang, , et al. (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature, 512, 155–160
https://doi.org/10.1038/nature13600
pmid: 25079324
|
72 |
H. E. Liu, , M. Triboulet, , A. Zia, , M. Vuppalapaty, , E. Kidess-Sigal, , J. Coller, , V. S. Natu, , V. Shokoohi, , J. Che, , C. Renier, , et al. (2017) Workflow optimization of whole genome amplification and targeted panel sequencing for CTC mutation detection. NPJ Genom. Med., 2, 34
https://doi.org/10.1038/s41525-017-0034-3
pmid: 29263843
|
73 |
A. Edwards, , A. Civitello, , H. A. Hammond, and C. T. Caskey, (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet., 49, 746–756
pmid: 1897522
|
74 |
L. Deleye, , A. S. Vander Plaetsen, , J. Weymaere, , D. Deforce, and F. Van Nieuwerburgh, (2018) Short tandem repeat analysis after whole genome amplification of single B-lymphoblastoid cells. Sci. Rep., 8, 1255
https://doi.org/10.1038/s41598-018-19509-5
pmid: 29352241
|
75 |
Y. Michikawa, , K. Sugahara, , T. Suga, , Y. Ohtsuka, , K. Ishikawa, , A. Ishikawa, , N. Shiomi, , T. Shiomi, , M. Iwakawa, and T. Imai, (2008) In-gel multiple displacement amplification of long DNA fragments diluted to the single molecule level. Anal. Biochem., 383, 151–158
https://doi.org/10.1016/j.ab.2008.08.011
pmid: 18768135
|
76 |
L. Deleye, , Y. Gansemans, , D. De Coninck, , F. Van Nieuwerburgh, , andD Deforce, (2018) Massively parallel sequencing of micro-manipulated cells targeting a comprehensive panel of disease-causing genes: A comparative evaluation of upstream whole-genome amplification methods. PLoS One, 13, e0196334
https://doi.org/10.1371/journal.pone.0196334
pmid: 29698522
|
77 |
R. G. Edwards, and R. L. Gardner, (1967) Sexing of live rabbit blastocysts. Nature, 214, 576–577
https://doi.org/10.1038/214576a0
pmid: 6036172
|
78 |
A. Hellani, , S. Coskun, , M. Benkhalifa, , A. Tbakhi, , N. Sakati, , A. Al-Odaib, and P. Ozand, (2004) Multiple displacement amplification on single cell and possible PGD applications. Mol. Hum. Reprod., 10, 847–852
https://doi.org/10.1093/molehr/gah114
pmid: 15465849
|
79 |
A. Hellani, , S. Coskun, , A. Tbakhi, and S. Al-Hassan, (2005) Clinical application of multiple displacement amplification in preimplantation genetic diagnosis. Reprod. Biomed. Online, 10, 376–380
https://doi.org/10.1016/S1472-6483(10)61799-3
pmid: 15820046
|
80 |
Y. Lu, , H. Peng, , Z. Jin, , J. Cheng,, , S. Wang, , M. Ma, , Y. Lu, , D. Han, , Y. Yao, , Y. Li, , et al. (2013) Preimplantation genetic diagnosis for a Chinese family with autosomal recessive Meckel-Gruber syndrome type 3 (MKS3). PLoS One, 8, e73245
https://doi.org/10.1371/journal.pone.0073245
pmid: 24039893
|
81 |
X. Shen, , D. Chen, , Y. Xu, , Y. Fu, and C. Zhou, (2019) Preimplantation genetic testing of achondroplasia by two haplotyping systems: short tandem repeats and single nucleotide polymorphism. Biochip J., 13, 165–173.
https://doi.org/10.1007/s13206-018-3207-y
|
82 |
L. Chen, , Z. Diao, , Z. Xu, , J. Zhou, , G. Yan, and H. Sun, (2017) The clinical application of NGS-based SNP haplotyping for PGD of Hb H disease. Syst Biol Reprod Med, 63, 212–217
https://doi.org/10.1080/19396368.2017.1296501
pmid: 28340305
|
83 |
S. C. Chen, , X. L. Xu, , J. Y. Zhang, , G. L. Ding, , L. Jin, , B. Liu, , D. M. Sun, , C. L. Mei, , X. N. Yang, , H. F. Huang, , et al. (2016) Identification of PKD2 mutations in human preimplantation embryos in vitro using a combination of targeted next-generation sequencing and targeted haplotyping. Sci. Rep., 6, 25488
https://doi.org/10.1038/srep25488
pmid: 27150309
|
84 |
M. Konstantinidis, , R. Prates, , N. N. Goodall, , J. Fischer, , V. Tecson, , T. Lemma, , B. Chu, , A. Jordan, , E. Armenti, , D. Wells, , et al. (2015) Live births following Karyomapping of human blastocysts: experience from clinical application of the method. Reprod. Biomed. Online, 31, 394–403
https://doi.org/10.1016/j.rbmo.2015.05.018
pmid: 26206283
|
85 |
A. R. Thornhill, , A. H. Handyside, , C. Ottolini, , S. A. Natesan, , J. Taylor, , K. Sage, , G. Harton, , K. Cliffe, , N. Affara, , M. Konstantinidis, , et al. (2015) Karyomapping-a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome. J. Assist. Reprod. Genet., 32, 347–356
https://doi.org/10.1007/s10815-014-0405-y
pmid: 25561157
|
86 |
M. Davison, , E. Hall, , R. Zare, and D. Bhaya, (2015) Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity. Photosynth. Res., 126, 135–146
https://doi.org/10.1007/s11120-014-0066-9
pmid: 25515769
|
87 |
J. Tu, , L. Chen, , S. Gao, , J. Zhang, , C. Bi, , Y. Tao, , N. Lu, and Z. Lu, (2019) Obtaining genome sequences of mutualistic bacteria in single Microcystis colonies. Int. J. Mol. Sci., 20, 5047
https://doi.org/10.3390/ijms20205047
pmid: 31614621
|
88 |
M. Parras-Moltó, , A. Rodríguez-Galet, , P. Suárez-Rodríguez, and A. López-Bueno, (2018) Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. Microbiome, 6, 119
https://doi.org/10.1186/s40168-018-0507-3
pmid: 29954453
|
89 |
N. E. Brinkman, , E. N. Villegas, , J. L. Garland, and S. P. Keely, (2018) Reducing inherent biases introduced during DNA viral metagenome analyses of municipal wastewater. PLoS One, 13, e0195350
https://doi.org/10.1371/journal.pone.0195350
pmid: 29614100
|
90 |
M. Hammond, , F. Homa, , H. Andersson-Svahn, , T. J. G. Ettema, and H. N. Joensson, (2016) Picodroplet partitioned whole genome amplification of low biomass samples preserves genomic diversity for metagenomic analysis. Microbiome, 4, 52
https://doi.org/10.1186/s40168-016-0197-7
pmid: 27716450
|
91 |
H. W. Veltkamp, , F. Akegawa Monteiro, , R. Sanders, , R. Wiegerink, and J. Lötters, (2020) Disposable DNA amplification chips with integrated low-cost heaters dagger. Micromachines (Basel), 11, 238
https://doi.org/10.3390/mi11030238
pmid: 32106462
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|