|
|
|
The methodological challenge in high-throughput profiling and quantifying microRNAs |
Mengya Chai, Xueyang Xiong, Huimin Wang, Lida Xu( ) |
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China |
|
|
Abstract: Background: MicroRNAs (miRNAs) play an essential role in various biological processes and signaling pathways through the regulation of gene expression and genome stability. Recent data indicated that the next-generation sequencing (NGS)-based high-throughput quantification of miRNAs from biofluids provided exciting possibilities for discovering biomarkers of various diseases and might help promote the development of the early diagnosis of cancer. However, the complex process of library construction for sequencing always introduces bias, which may twist the actual expression levels of miRNAs and reach misleading conclusions. Results: We discussed the deviation issue in each step during constructing miRNA sequencing libraries and suggested many strategies to generate high-quality data by avoiding or minimizing bias. For example, improvement of adapter design (a blocking element away from the ligation end, a randomized fragment adjacent to the ligation junction and UMI) and optimization of ligation conditions (a high concentration of PEG 8000, reasonable incubation temperature and time, and the selection of ligase) in adapter ligation, high-quality input RNA samples, removal of adapter dimer (solid phase reverse immobilization (SPRI) magnetic bead, locked nucleic acid (LNA) oligonucleotide, and Phi29 DNA polymerase), PCR (linear amplification, touch-down PCR), and product purification are essential factors for achieving high-quality sequencing data. Moreover, we described several protocols that exhibit significant advantages using combinatorial optimization and commercially available low-input miRNA library preparation kits. Conclusions: Overall, our work provides the basis for unbiased high-throughput quantification of miRNAs. These data will help achieve optimal design involving miRNA profiling and provide reliable guidance for clinical diagnosis and treatment by significantly increasing the credibility of potential biomarkers. |
Key words:
microRNA
next-generation sequencing
library preparation
bias
|
收稿日期: 2021-01-02
出版日期: 2022-12-27
|
Corresponding Author(s):
Lida Xu
|
1 |
H., Liang, J., Zhang, K., Zen, C. Y. Zhang, (2013). Nuclear microRNAs and their unconventional role in regulating non-coding RNAs. Protein Cell, 4: 325–330
https://doi.org/10.1007/s13238-013-3001-5
|
2 |
A. M. Gurtan, P. Sharp, (2013). The role of miRNAs in regulating gene expression networks. J. Mol. Biol., 425: 3582–3600
https://doi.org/10.1016/j.jmb.2013.03.007
|
3 |
D. Bartel, (2018). Metazoan MicroRNAs. Cell, 173: 20–51
https://doi.org/10.1016/j.cell.2018.03.006
|
4 |
N., Ludwig, P., Leidinger, K., Becker, C., Backes, T., Fehlmann, C., Pallasch, S., Rheinheimer, B., Meder, C., hler, E. Meese, et al.. (2016). Distribution of miRNA expression across human tissues. Nucleic Acids Res., 44: 3865–3877
https://doi.org/10.1093/nar/gkw116
|
5 |
M. A., Cortez, C., Bueso-Ramos, J., Ferdin, G., Lopez-Berestein, A. K. Sood, G. Calin, (2011). MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol., 8: 467–477
https://doi.org/10.1038/nrclinonc.2011.76
|
6 |
C. Tissot. (2008) Application Note: Analysis of miRNA content in total RNA preparations using the Agilent 2100 bioanalyzer. Agilent Technologies, Santa Clara, CA. Publication number 5989-7870EN, pp. 1‒8
|
7 |
D., Jost, A. Nowojewski, (2011). Small RNA biology is systems biology. BMB Rep., 44: 11–21
https://doi.org/10.5483/BMBRep.2011.44.1.11
|
8 |
M. Ghildiyal, P. Zamore, (2009). Small silencing RNAs: an expanding universe. Nat. Rev. Genet., 10: 94–108
https://doi.org/10.1038/nrg2504
|
9 |
K. W. Witwer, M. Halushka, (2016). Toward the promise of microRNAs — Enhancing reproducibility and rigor in microRNA research. RNA Biol., 13: 1103–1116
https://doi.org/10.1080/15476286.2016.1236172
|
10 |
T. Kim, (2013). Non-coding RNAs: functional aspects and diagnostic utility in oncology. Int. J. Mol. Sci., 14: 4934–4968
https://doi.org/10.3390/ijms14034934
|
11 |
C., Backes, E. Meese, (2016). Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol. Diagn. Ther., 20: 509–518
https://doi.org/10.1007/s40291-016-0221-4
|
12 |
Y. Kim, (2015). Extracellular microRNAs as biomarkers in human disease. Chonnam Med. J., 51: 51–57
https://doi.org/10.4068/cmj.2015.51.2.51
|
13 |
Y. Ma, (2018). The Challenge of microRNA as a biomarker of epilepsy. Curr. Neuropharmacol, 16: 37–42
|
14 |
C. A., Raabe, T. H., Tang, J. Brosius, T. Rozhdestvensky, (2014). Biases in small RNA deep sequencing data. Nucleic Acids Res., 42: 1414–1426
https://doi.org/10.1093/nar/gkt1021
|
15 |
N., Raghavachari, J., Barb, Y., Yang, P., Liu, K., Woodhouse, D., Levy, C. J., Donnell, P. J. Munson, G. Kato, (2012). A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. BMC Med. Genomics, 5: 28
https://doi.org/10.1186/1755-8794-5-28
|
16 |
A. M. L., Coenen-Stass, I., Magen, T., Brooks, I. Z., Ben-Dov, L., Greensmith, E. Hornstein, (2018). Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol, 15: 1133–1145
|
17 |
Z., Zhang, J. E., Lee, K., Riemondy, E. M. Anderson, (2013). High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing. Genome Biol., 14: R109
https://doi.org/10.1186/gb-2013-14-10-r109
|
18 |
M., Pirritano, T., Fehlmann, T., Laufer, N., Ludwig, G., Gasparoni, Y., Li, E., Meese, A. Keller, (2018). Next generation sequencing analysis of total small noncoding RNAs from low input RNA from dried blood sampling. Anal. Chem., 90: 11791–11796
https://doi.org/10.1021/acs.analchem.8b03557
|
19 |
A. Kozomara, (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res., 39: D152–D157
https://doi.org/10.1093/nar/gkq1027
|
20 |
C. C., Pritchard, H. H. Cheng, (2012). MicroRNA profiling: approaches and considerations. Nat. Rev. Genet., 13: 358–369
https://doi.org/10.1038/nrg3198
|
21 |
C. E., Joyce, X., Zhou, J., Xia, C., Ryan, B., Thrash, A., Menter, W. Zhang, A. Bowcock, (2011). Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum. Mol. Genet., 20: 4025–4040
https://doi.org/10.1093/hmg/ddr331
|
22 |
M., Hafner, N., Renwick, M., Brown, D., Holoch, C., Lin, J. T., Pena, J. D., Nusbaum, P., Morozov, J. Ludwig, et al.. (2011). RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA, 17: 1697–1712
https://doi.org/10.1261/rna.2799511
|
23 |
D., Buschmann, A., Haberberger, B., Kirchner, M., Spornraft, I., Riedmaier, G. Schelling, M. Pfaffl, (2016). Toward reliable biomarker signatures in the age of liquid biopsies — how to standardize the small RNA-Seq workflow. Nucleic Acids Res., 44: 5995–6018
https://doi.org/10.1093/nar/gkw545
|
24 |
R. T., Fuchs, Z., Sun, F. Zhuang, G. Robb, (2015). Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS One, 10: e0126049
https://doi.org/10.1371/journal.pone.0126049
|
25 |
E. L., van Dijk, Y. Jaszczyszyn, (2014). Library preparation methods for next-generation sequencing: tone down the bias. Exp. Cell Res., 322: 12–20
https://doi.org/10.1016/j.yexcr.2014.01.008
|
26 |
K. P., McCormick, M. R. Willmann, B. Meyers, (2011). Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence, 2: 2
https://doi.org/10.1186/1758-907X-2-2
|
27 |
S., Alon, F., Vigneault, S., Eminaga, D. C., Christodoulou, J. G., Seidman, G. M. Church, (2011). Barcoding bias in high-throughput multiplex sequencing of miRNA. Genome Res., 21: 1506–1511
https://doi.org/10.1101/gr.121715.111
|
28 |
H., Kim, J., Kim, K., Kim, H., Chang, K. You, V. Kim, (2019). Bias-minimized quantification of microRNA reveals widespread alternative processing and 3′ end modification. Nucleic Acids Res., 47: 2630–2640
https://doi.org/10.1093/nar/gky1293
|
29 |
S. E. V., Linsen, E., de Wit, G., Janssens, S., Heater, L., Chapman, R. K., Parkin, B., Fritz, S. K., Wyman, E., de Bruijn, E. E. Voest, et al.. (2009). Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods, 6: 474–476
https://doi.org/10.1038/nmeth0709-474
|
30 |
F., Heinicke, X., Zhong, M., Zucknick, J., Breidenbach, A. Y. M., Sundaram, M., Leithaug, M., Dalland, A., Farmer, J. M. Henderson, et al.. (2020). Systematic assessment of commercially available low-input miRNA library preparation kits. RNA Biol., 17: 75–86
https://doi.org/10.1080/15476286.2019.1667741
|
31 |
C. A., Raabe, C. H., Hoe, G., Randau, J., Brosius, T. H. Tang, T. Rozhdestvensky, (2011). The rocks and shallows of deep RNA sequencing: Examples in the Vibrio cholerae RNome. RNA, 17: 1357–1366
https://doi.org/10.1261/rna.2682311
|
32 |
F., Zhuang, R. T. Fuchs, G. Robb, (2012). Small RNA expression profiling by high-throughput sequencing: implications of enzymatic manipulation. J. Nucleic Acids, 2012: 360358
https://doi.org/10.1155/2012/360358
|
33 |
T. Kanagawa, (2003). Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng., 96: 317–323
https://doi.org/10.1016/S1389-1723(03)90130-7
|
34 |
Y. K., Kim, J., Yeo, B., Kim, M. Ha, V. Kim, (2012). Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol. Cell, 46: 893–895
https://doi.org/10.1016/j.molcel.2012.05.036
|
35 |
V., El-Khoury, S., Pierson, T., Kaoma, F. Bernardin, (2016). Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material. Sci. Rep., 6: 19529
https://doi.org/10.1038/srep19529
|
36 |
K. L., Ford, M., Anwar, R., Heys, E. M., Ahmed, M., Caputo, L., Game, B. C., Reeves, P. P., Punjabi, G. D., Angelini, E. Petretto, et al.. (2019). Optimisation of laboratory methods for whole transcriptomic RNA analyses in human left ventricular biopsies and blood samples of clinical relevance. PLoS One, 14: e0213685
https://doi.org/10.1371/journal.pone.0213685
|
37 |
C. J., Taylor, S. N., Satoor, A. K., Ranjan, M. V. Pereira e Cotta, M. Joglekar, (2012). A protocol for measurement of noncoding RNA in human serum. Exp. Diabetes Res., 2012: 168368
https://doi.org/10.1155/2012/168368
|
38 |
L. A., ez, L., Martos, J., Oto, P., Medina, (2017). Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation. PLoS One, 12: e0187005
https://doi.org/10.1371/journal.pone.0187005
|
39 |
A., Gautam, R., Kumar, G., Dimitrov, A., Hoke, R. Hammamieh, (2016). Identification of extracellular miRNA in archived serum samples by next-generation sequencing from RNA extracted using multiple methods. Mol. Biol. Rep., 43: 1165–1178
https://doi.org/10.1007/s11033-016-4043-6
|
40 |
A., Fishman, D. Light, A. Lamm, (2018). QsRNA-seq: a method for high-throughput profiling and quantifying small RNAs. Genome Biol., 19: 113
https://doi.org/10.1186/s13059-018-1495-0
|
41 |
K., Wright, K., de Silva, A. C. Purdie, K. Plain, (2020). Comparison of methods for miRNA isolation and quantification from ovine plasma. Sci. Rep., 10: 825
https://doi.org/10.1038/s41598-020-57659-7
|
42 |
M., Hafner, P., Landgraf, J., Ludwig, A., Rice, T., Ojo, C., Lin, D., Holoch, C. Lim, (2008). Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods, 44: 3–12
|
43 |
E. BerezikovE. CuppenR. H. Plasterk. (2006) Approaches to microRNA discovery. Nature Genetics, 38, Suppl, S2–7
|
44 |
E., Romaniuk, L. W., McLaughlin, T. Neilson, P. Romaniuk, (1982). The effect of acceptor oligoribonucleotide sequence on the T4 RNA ligase reaction. Eur. J. Biochem., 125: 639–643
https://doi.org/10.1111/j.1432-1033.1982.tb06730.x
|
45 |
F., Zhuang, R. T., Fuchs, Z., Sun, Y. Zheng, G. Robb, (2012). Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res., 40: e54
https://doi.org/10.1093/nar/gkr1263
|
46 |
A. D., Jayaprakash, O., Jabado, B. D. Brown, (2011). Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res., 39: e141
https://doi.org/10.1093/nar/gkr693
|
47 |
Y., Song, K. J. Liu, T. Wang, (2014). Elimination of ligation dependent artifacts in T4 RNA ligase to achieve high efficiency and low bias microRNA capture. PLoS One, 9: e94619
https://doi.org/10.1371/journal.pone.0094619
|
48 |
K., Sorefan, H., Pais, A. E., Hall, A., Kozomara, S., Griffiths-Jones, V. Moulton, (2012). Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence, 3: 4
https://doi.org/10.1186/1758-907X-3-4
|
49 |
T. J., Jackson, R. V., Spriggs, N. J., Burgoyne, C. Jones, A. Willis, (2014). Evaluating bias-reducing protocols for RNA sequencing library preparation. BMC Genomics, 15: 569
https://doi.org/10.1186/1471-2164-15-569
|
50 |
S., n-Soler, J. M., Vo, R. E., Hogans, A., Dallas, B. H. Johnston, S. Kazakov, (2018). Decreasing miRNA sequencing bias using a single adapter and circularization approach. Genome Biol., 19: 105
https://doi.org/10.1186/s13059-018-1488-z
|
51 |
X., Liu, Q., Zheng, N., Vrettos, M., Maragkakis, P., Alexiou, B. D. Gregory, (2014). A MicroRNA precursor surveillance system in quality control of microRNA synthesis. Mol. Cell., 55: 868–879
|
52 |
C., Lee, R. A., Harris, J. K., Wall, R. D. Mayfield, C. Wilke, (2013). RNaseIII and T4 polynucleotide kinase sequence biases and solutions during RNA-seq library construction. Biol. Direct, 8: 16
https://doi.org/10.1186/1745-6150-8-16
|
53 |
N. T., Ingolia, S., Ghaemmaghami, J. R. Newman, J. Weissman, (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324: 218–223
https://doi.org/10.1126/science.1168978
|
54 |
Q., Nguyen, J., Aguado, F., Iannelli, A. M., Suzuki, F., Rossiello, F. Adda di Fagagna, (2018). Target-enrichment sequencing for detailed characterization of small RNAs. Nat. Protoc., 13: 768–786
|
55 |
M., Hagemann-Jensen, I., Abdullayev, R. Sandberg, O. Faridani, (2018). Small-seq for single-cell small-RNA sequencing. Nat. Protoc., 13: 2407–2424
https://doi.org/10.1038/s41596-018-0049-y
|
56 |
G., Sun, X., Wu, J., Wang, H., Li, X., Li, H., Gao, J. Rossi, (2011). A bias-reducing strategy in profiling small RNAs using Solexa. RNA, 17: 2256–2262
https://doi.org/10.1261/rna.028621.111
|
57 |
C., Dard-Dascot, D., Naquin, Y., Aubenton-Carafa, K., Alix, C. Thermes, (2018). Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics, 19: 118
https://doi.org/10.1186/s12864-018-4491-6
|
58 |
P., Xu, M., Billmeier, I., Mohorianu, D., Green, W. D. Fraser, (2015). An improved protocol for small RNA library construction using high definition adapters. Methods Next Generat. Sequenc., 2: 1–10
https://doi.org/10.1515/mngs-2015-0001
|
59 |
M. D., Giraldez, R. M., Spengler, A., Etheridge, P. M., Godoy, A. J., Barczak, S., Srinivasan, P. L., De Hoff, K., Tanriverdi, A., Courtright, S. Lu, et al.. (2018). Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol., 36: 746–757
https://doi.org/10.1038/nbt.4183
|
60 |
J., Baran-Gale, C. L., Kurtz, M. R., Erdos, C., Sison, A., Young, E. E., Fannin, P. S. Chines, (2015). Addressing bias in small RNA library preparation for sequencing: A new protocol recovers microRNAs that evade capture by current methods. Front. Genet., 6: 352
https://doi.org/10.3389/fgene.2015.00352
|
61 |
M. Billmeier, (2017). Small RNA profiling by next-generation sequencing using high-definition adapters. Methods Mol. Biol., 1580: 45–57
https://doi.org/10.1007/978-1-4939-6866-4_4
|
62 |
A. M. Zhelkovsky, L. McReynolds, (2011). Simple and efficient synthesis of 5′ pre-adenylated DNA using thermostable RNA ligase. Nucleic Acids Res., 39: e117
https://doi.org/10.1093/nar/gkr544
|
63 |
T., Kivioja, A., rautio, K., Karlsson, M., Bonke, M., Enge, S. Linnarsson, (2011). Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods, 9: 72–74
https://doi.org/10.1038/nmeth.1778
|
64 |
S., Viollet, R. T., Fuchs, D. B., Munafo, F. Zhuang, G. Robb, (2011). T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis. BMC Biotechnol., 11: 72
https://doi.org/10.1186/1472-6750-11-72
|
65 |
B. Harrison, S. Zimmerman, (1984). Polymer-stimulated ligation: enhanced ligation of oligo- and polynucleotides by T4 RNA ligase in polymer solutions. Nucleic Acids Res., 12: 8235–8251
https://doi.org/10.1093/nar/12.21.8235
|
66 |
S., Shore, J. M., Henderson, A., Lebedev, M. P., Salcedo, G., Zon, A. P., McCaffrey, N. Paul, R. Hogrefe, (2016). Small RNA library preparation method for next-generation sequencing using chemical modifications to prevent adapter dimer formation. PLoS One, 11: e0167009
https://doi.org/10.1371/journal.pone.0167009
|
67 |
C. K., Kwok, Y., Ding, M. E. M., Sherlock, S. M. Assmann, P. Bevilacqua, (2013). A hybridization-based approach for quantitative and low-bias single-stranded DNA ligation. Anal. Biochem., 435: 181–186
https://doi.org/10.1016/j.ab.2013.01.008
|
68 |
L., Lama, J., Cobo, D. Buenaventura, (2019). Small RNA-seq: The RNA 5′-end adapter ligation problem and how to circumvent it. J. Biol. Methods, 6: e108
https://doi.org/10.14440/jbm.2019.269
|
69 |
F., Vigneault, D., Ter-Ovanesyan, S., Alon, S., Eminaga, J. G., Seidman, E. Eisenberg, (2012). High-throughput multiplex sequencing of miRNA. Curr. Protoc. Hum. Genet., 11.12.1–10
|
70 |
H., Summer, R. mer, (2009). Denaturing urea polyacrylamide gel electrophoresis (urea PAGE). J. Vis. Exp., 29: 1485
|
71 |
S., Lundin, J. Lundeberg, M. Nitabach, (2011). Large scale library generation for high throughput sequencing. PLoS One, 6: e19119
https://doi.org/10.1371/journal.pone.0019119
|
72 |
S., Lundin, H., Stranneheim, E., Pettersson, D., Klevebring, J. Lundeberg, J. Schnur, (2010). Increased throughput by parallelization of library preparation for massive sequencing. PLoS One, 5: e10029
https://doi.org/10.1371/journal.pone.0010029
|
73 |
M., Kawano, C., Kawazu, M., Lizio, H., Kawaji, P., Carninci, H. Suzuki, (2010). Reduction of non-insert sequence reads by dimer eliminator LNA oligonucleotide for small RNA deep sequencing. Biotechniques, 49: 751–755
https://doi.org/10.2144/000113516
|
74 |
L. Blanco, (1996). Relating structure to function in phi29 DNA polymerase. J. Biol. Chem., 271: 8509–8512
https://doi.org/10.1074/jbc.271.15.8509
|
75 |
C., Garmendia, A., Bernad, J. A., Esteban, L. Blanco, (1992). The bacteriophage phi 29 DNA polymerase, a proofreading enzyme. J. Biol. Chem., 267: 2594–2599
https://doi.org/10.1016/S0021-9258(18)45922-4
|
76 |
A., Lagunavicius, Z., Kiveryte, V., Zimbaite-Ruskuliene, T. Radzvilavicius, (2008). Duality of polynucleotide substrates for Phi29 DNA polymerase: 3′→5′ RNase activity of the enzyme. RNA, 14: 503–513
https://doi.org/10.1261/rna.622108
|
77 |
X. Y., Li, Y. C., Du, Y. P. Zhang, D. Kong, (2017). Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Sci. Rep., 7: 6263
https://doi.org/10.1038/s41598-017-06594-1
|
78 |
T., Krzywkowski, M., hnemund, D. Wu, (2018). Limited reverse transcriptase activity of phi29 DNA polymerase. 46, 3625–3632
|
79 |
C., Wright, A., Rajpurohit, E. E., Burke, C., Williams, L., Collado-Torres, M., Kimos, N. J., Brandon, A. J., Cross, A. E., Jaffe, D. R. Weinberger, et al.. (2019). Comprehensive assessment of multiple biases in small RNA sequencing reveals significant differences in the performance of widely used methods. BMC Genomics, 20: 513
https://doi.org/10.1186/s12864-019-5870-3
|
80 |
J. Dabney, (2012). Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques, 52: 87–94
https://doi.org/10.2144/000113809
|
81 |
E., Sendler, G. D. Johnson, S. Krawetz, (2011). Local and global factors affecting RNA sequencing analysis. Anal. Biochem., 419: 317–322
https://doi.org/10.1016/j.ab.2011.08.013
|
82 |
L., Mamanova, A. J., Coffey, C. E., Scott, I., Kozarewa, E. H., Turner, A., Kumar, E., Howard, J. Shendure, D. Turner, (2010). Target-enrichment strategies for next-generation sequencing. Nat. Methods, 7: 111–118
https://doi.org/10.1038/nmeth.1419
|
83 |
L. T., Sam, D., Lipson, T., Raz, X., Cao, J., Thompson, P. M., Milos, D., Robinson, A. M., Chinnaiyan, C. Kumar-Sinha, C. Maher, (2011). A comparison of single molecule and amplification based sequencing of cancer transcriptomes. PLoS One, 6: e17305
https://doi.org/10.1371/journal.pone.0017305
|
84 |
S. R., Head, H. K., Komori, S. A., LaMere, T., Whisenant, F., Van Nieuwerburgh, D. R. Salomon, (2014). Library construction for next-generation sequencing: overviews and challenges. Biotechniques, 56: 61–77
https://doi.org/10.2144/000114133
|
85 |
D., Aird, M. G., Ross, W. S., Chen, M., Danielsson, T., Fennell, C., Russ, D. B., Jaffe, C. Nusbaum, (2011). Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol., 12: R18
https://doi.org/10.1186/gb-2011-12-2-r18
|
86 |
J. Hong, (2017). Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing. Biotechniques, 63: 221–226
https://doi.org/10.2144/000114608
|
87 |
Y., Fu, P. H., Wu, T., Beane, P. D. Zamore, (2018). Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics, 19: 531
https://doi.org/10.1186/s12864-018-4933-1
|
88 |
S. T., Okino, M., Kong, H. Sarras, (2015). Evaluation of bias associated with high-multiplex, target-specific pre-amplification. Biomol Detect. Quantif., 6: 13–21
https://doi.org/10.1016/j.bdq.2015.12.001
|
89 |
L., Moldovan, K. E., Batte, J., Trgovcich, J., Wisler, C. B. Marsh, (2014). Methodological challenges in utilizing miRNAs as circulating biomarkers. J. Cell. Mol. Med., 18: 371–390
https://doi.org/10.1111/jcmm.12236
|
90 |
K. Grisedale, (2014). Linear amplification of target prior to PCR for improved low template DNA results. Biotechniques, 56: 145–147
https://doi.org/10.2144/000114148
|
91 |
J., Lee, S. Heo, (2019). Applying a linear amplification strategy to recombinase polymerase amplification for uniform DNA library amplification. ACS Omega, 4: 19953–19958
https://doi.org/10.1021/acsomega.9b02886
|
92 |
H. H., Larsen, H., Masur, J. A., Kovacs, V. J., Gill, V. A., Silcott, P., Kogulan, J., Maenza, M., Smith, D. R. Lucey, S. Fischer, (2002). Development and evaluation of a quantitative, touch-down, real-time PCR assay for diagnosing Pneumocystis carinii pneumonia. J. Clin. Microbiol., 40: 490–494
https://doi.org/10.1128/JCM.40.2.490-494.2002
|
93 |
N., Chen, W. M. Wang, H. Wang, (2016). An efficient full-length cDNA amplification strategy based on bioinformatics technology and multiplexed PCR methods. Sci. Rep., 6: 19420
https://doi.org/10.1038/srep19420
|
94 |
N. J., Loman, R. V., Misra, T. J., Dallman, C., Constantinidou, S. E., Gharbia, J. Wain, M. Pallen, (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol., 30: 434–439
https://doi.org/10.1038/nbt.2198
|
95 |
A. Fishman, (2019). QsRNA-seq: A protocol for generating libraries for high-throughput sequencing of small RNAs. Bio Protoc., 9: e3179
https://doi.org/10.21769/BioProtoc.3179
|
96 |
R. K. Y., Wong, M., Macmahon, J. V. Woodside, D. Simpson, (2019). A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genomics. 20, 446
|
97 |
Z. T., Herbert, J., Thimmapuram, S., Xie, J. P., Kershner, F. W., Kolling, C. S., Ringelberg, A., LeClerc, Y. O., Alekseyev, J., Fan, J. W. Podnar, et al.. (2020). Multisite evaluation of next-generation methods for small RNA quantification. J. Biomol. Tech., 31: 47–56
https://doi.org/10.7171/jbt.20-3102-001
|
98 |
P. S., Pine, S. P., Lund, J. R., Parsons, L. K., Vang, A. A., Mahabal, L., Cinquini, S. C., Kelly, H., Kincaid, D. J., Crichton, A. Spira, et al.. (2018). Summarizing performance for genome scale measurement of miRNA: reference samples and metrics. BMC Genomics, 19: 180
https://doi.org/10.1186/s12864-018-4496-1
|
99 |
A., Yeri, A., Courtright, K., Danielson, E., Hutchins, E., Alsop, E., Carlson, M., Hsieh, O., Ziegler, A., Das, R. V. Shah, et al.. (2018). Evaluation of commercially available small RNASeq library preparation kits using low input RNA. BMC Genomics, 19: 331
https://doi.org/10.1186/s12864-018-4726-6
|
100 |
X., Huang, T., Yuan, M., Tschannen, Z., Sun, H., Jacob, M., Du, M., Liang, R. L., Dittmar, Y., Liu, M. Liang, et al.. (2013). Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics, 14: 319
https://doi.org/10.1186/1471-2164-14-319
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|