Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2022, Vol. 10 Issue (1): 55-66   https://doi.org/10.15302/J-QB-022-0289
  本期目录
The progress on the estimation of DNA methylation level and the detection of abnormal methylation
Shicai Fan1,2(), Likun Wang3, Liang Liang4, Xiaohong Cao5, Jianxiong Tang2, Qi Tian2
1. Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
2. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
3. Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
4. Cancer Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
5. Department of Geriatric Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
 全文: PDF(1346 KB)   HTML
Abstract

Background: DNA methylation is a key heritable epigenetic modification that plays a crucial role in transcriptional regulation and therefore a broad range of biological processes. The complex patterns of DNA methylation highlight the significance of the profiling the DNA methylation landscape.

Results: In this review, the main high-throughput detection technologies are summarized, and then the three trends of computational estimation of DNA methylation levels were analyzed, especially the expanding of the methylation data with lower coverage. Furthermore, the detection methods of differential methylation patterns for sequencing and array data were presented.

Conclusions: More and more research indicated the great importance of DNA methylation changes across different diseases, such as cancers. Although a lot of enormous progress has been made in understanding the role of DNA methylation, only few methylated genes or functional elements serve as clinically relevant cancer biomarkers. The bottleneck in DNA methylation advances has shifted from data generation to data analysis. Therefore, it is meaningful to develop machine learning models for computational estimation of methylation profiling and identify the potential biomarkers.

Key wordsDNA methylation    genome-wide profiling    computational estimation    single-cell methylome    differential methylation detection
收稿日期: 2021-08-12      出版日期: 2022-03-28
Corresponding Author(s): Shicai Fan   
作者简介:

Peng Lu, Renxing Wang, and Yue Xing contributed equally to this work.

 引用本文:   
. [J]. Quantitative Biology, 2022, 10(1): 55-66.
Shicai Fan, Likun Wang, Liang Liang, Xiaohong Cao, Jianxiong Tang, Qi Tian. The progress on the estimation of DNA methylation level and the detection of abnormal methylation. Quant. Biol., 2022, 10(1): 55-66.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.15302/J-QB-022-0289
https://academic.hep.com.cn/qb/CN/Y2022/V10/I1/55
Fig.1  
Fig.2  
Method Algorithm Features Original coverage Expanded profiling Tool
Fan et al. [60] SVM a) DNA sequenceb) Neighboring methylation values 450K ~11 folds of 450K /
Fan et al. [61] LR a) DNA sequenceb) Neighboring methylation valuesc) Methylation values from similarity tissues 450K ~18.5 folds of 450K http://wanglab.ucsd.edu/star/LR450K/
Fan et al. [42] LR a) Neighboring methylation valuesb) Methylation values from similarity tissues 450K ~18.9 folds of 450K, more than 10 times faster speed http://114.55.236.67:8013/Integrative_Analysis/home
Zheng et al. [62] RF a) RE CpG density and RE lengthb) Smith-Waterman (SW) scorec) Number of neighboring profiled CpGsd) Genomic region of the target CpG 450K/850K 2.7–3.7 times Alu and about 20% more LINE-1 http://bioconductor.org/packages/release/bioc/html/REMP.html
Li et al. [63] Ensemble model Methylation values in 450K 450K 850K /
Tang et al. [64] LR Methylation feature that shared the most similar methylation pattern with the CpG locus to be predicted 450K 850K https://github.com/JxTang-bioinformatics/PretiMeth
Yu et al. [65] MRM Local methylation profile from both regions and subjects RRBS ~ 300 K CpGs in the promoter regions of chromosome 17 https://github.com/yuft2003/MRM
Tab.1  
1 A. Bird (1986). CpG-rich islands and the function of DNA methylation. Nature, 321 : 209–213
https://doi.org/10.1038/321209a0
2 W. Reik (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet., 2 : 21–32
https://doi.org/10.1038/35047554
3 W., Reik W. Dean (2001). Epigenetic reprogramming in mammalian development. Science, 293 : 1089–1093
https://doi.org/10.1126/science.1063443
4 T., Mohandas R. S. Sparkes L. Shapiro (1981). Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science, 211 : 393–396
https://doi.org/10.1126/science.6164095
5 S. M. Gartler A. Riggs (1983). Mammalian X-chromosome inactivation. Annu. Rev. Genet., 17 : 155–190
https://doi.org/10.1146/annurev.ge.17.120183.001103
6 W., Reik A., Collick M. L., Norris S. C. Barton M. Surani (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, 328 : 248–251
https://doi.org/10.1038/328248a0
7 S., Chen G., Yan W., Zhang J., Li R. Jiang (2021). RA3 is a reference-guided approach for epigenetic characterization of single cells. Nat. Commun., 12 : 2177
https://doi.org/10.1038/s41467-021-22495-4
8 Q., Liu F., Xia Q. Yin (2018). Chromatin accessibility prediction via a hybrid deep convolutional neural network. Bioinformatics, 34 : 732–738
https://doi.org/10.1093/bioinformatics/btx679
9 S. B. Baylin P. Jones (2011). A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer, 11 : 726–734
https://doi.org/10.1038/nrc3130
10 K., Skvortsova C. Stirzaker (2019). The DNA methylation landscape in cancer. Essays Biochem., 63 : 797–811
https://doi.org/10.1042/EBC20190037
11 S. Fan (2016). Methods for genome-wide DNA methylation analysis in human cancer. Brief. Funct. Genomics, 15 : 432–442
https://doi.org/10.1093/bfgp/elw010
12 P. Laird (2010). Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet., 11 : 191–203
https://doi.org/10.1038/nrg2732
13 C. Bock (2012). Analysing and interpreting DNA methylation data. Nat. Rev. Genet., 13 : 705–719
https://doi.org/10.1038/nrg3273
14 S. J., Cokus S., Feng X., Zhang Z., Chen B., Merriman C. D., Haudenschild S., Pradhan S. F., Nelson M. Pellegrini S. Jacobsen (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452 : 215–219
https://doi.org/10.1038/nature06745
15 S., Friso S. W., Choi G. G. Dolnikowski (2002). A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal. Chem., 74 : 4526–4531
https://doi.org/10.1021/ac020050h
16 S., Lisanti W. A., Omar B., Tomaszewski S., De Prins G., Jacobs G., Koppen J. C. Mathers S. Langie (2013). Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One, 8 : e79044
https://doi.org/10.1371/journal.pone.0079044
17 R., Lister R. C., Malley J., Tonti-Filippini B. D., Gregory C. C., Berry A. H. Millar J. Ecker (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133 : 523–536
https://doi.org/10.1016/j.cell.2008.03.029
18 T. K., Kelly Y., Liu F. D., Lay G., Liang B. P. Berman P. Jones (2012). Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res., 22 : 2497–2506
https://doi.org/10.1101/gr.143008.112
19 M., Weber J. J., Davies D., Wittig E. J., Oakeley M., Haase W. L. Lam (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet., 37 : 853–862
https://doi.org/10.1038/ng1598
20 R., Pidsley E., Zotenko T. J., Peters M. G., Lawrence G. P., Risbridger P., Molloy S., Van Djik B., Muhlhausler C. Stirzaker S. Clark (2016). Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol., 17 : 208
https://doi.org/10.1186/s13059-016-1066-1
21 F., Eckhardt J., Lewin R., Cortese V. K., Rakyan J., Attwood M., Burger J., Burton T. V., Cox R., Davies T. A. Down et al.. (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet., 38 : 1378–1385
https://doi.org/10.1038/ng1909
22 Y., Tian T. J., Morris A. P., Webster Z., Yang S., Beck A. Feber A. Teschendorff (2017). ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 33 : 3982–3984
https://doi.org/10.1093/bioinformatics/btx513
23 S. A., Smallwood H. J., Lee C., Angermueller F., Krueger H., Saadeh J., Peat S. R., Andrews O., Stegle W. Reik (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods, 11 : 817–820
https://doi.org/10.1038/nmeth.3035
24 C., Angermueller S. J., Clark H. J., Lee I. C., Macaulay M. J., Teng T. X., Hu F., Krueger S., Smallwood C. P., Ponting T. Voet et al.. (2016). Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods, 13 : 229–232
https://doi.org/10.1038/nmeth.3728
25 S. Pott (2017). Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife, e23203
https://doi.org/10.7554/eLife.23203
26 Y., Wang A., Wang Z., Liu A. L., Thurman L. S., Powers M., Zou Y., Zhao A., Hefel Y., Li J. Zabner et al.. (2019). Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res., 29 : 1329–1342
https://doi.org/10.1101/gr.251116.119
27 H., Gu A. T., Raman X., Wang F., Gaiti R., Chaligne A. W., Mohammad A., Arczewska Z. D., Smith D. A., Landau M. J. Aryee et al.. (2021). Smart-RRBS for single-cell methylome and transcriptome analysis. Nat. Protoc., 16 : 4004–4030
https://doi.org/10.1038/s41596-021-00571-9
28 W. S., Yong F. M. Hsu P. Chen (2016). Profiling genome-wide DNA methylation. Epigenet Chromatin. 9, 26
https://doi.org/10.1186/s13072-016-0075-3
29 R. A., Dirks H. G. Stunnenberg (2016). Genome-wide epigenomic profiling for biomarker discovery. Clin. Epigenetics, 8 : 122
https://doi.org/10.1186/s13148-016-0284-4
30 I., Rauluseviciute M. Rye (2019). DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis. Clin. Epigenetics, 11 : 193
https://doi.org/10.1186/s13148-019-0795-x
31 T., Zuo B., Tycko T. M., Liu J. J. Lin T. Huang (2009). Methods in DNA methylation profiling. Epigenomics, 1 : 331–345
https://doi.org/10.2217/epi.09.31
32 S. Li T. Tollefsbol (2021). DNA methylation methods: Global DNA methylation and methylomic analyses. Methods, 187 : 28–43
https://doi.org/10.1016/j.ymeth.2020.10.002
33 I. Arora T. Tollefsbol (2021). Computational methods and next-generation sequencing approaches to analyze epigenetics data: Profiling of methods and applications. Methods, 187 : 92–103
https://doi.org/10.1016/j.ymeth.2020.09.008
34 D., Li B., Zhang X. Xing (2015). Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. Methods, 72 : 29–40
https://doi.org/10.1016/j.ymeth.2014.10.032
35 A. K., Maunakea R. P., Nagarajan M., Bilenky T. J., Ballinger C., Souza S. D., Fouse B. E., Johnson C., Hong C., Nielsen Y. Zhao et al.. (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466 : 253–257
https://doi.org/10.1038/nature09165
36 B. E., Bernstein J. A., Stamatoyannopoulos J. F., Costello B., Ren A., Milosavljevic A., Meissner M., Kellis M. A., Marra A. L., Beaudet J. R. Ecker et al.. (2010). The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol., 28 : 1045–1048
https://doi.org/10.1038/nbt1010-1045
37 I., Dunham A., Kundaje S. F., Aldred P. J., Collins C., Davis F., Doyle C. B., Epstein S., Frietze J., Harrow R. Kaul et al.. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489 : 57–74
https://doi.org/10.1038/nature11247
38 A., Meissner T. S., Mikkelsen H., Gu M., Wernig J., Hanna A., Sivachenko X., Zhang B. E., Bernstein C., Nusbaum D. B. Jaffe et al.. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454 : 766–770
https://doi.org/10.1038/nature07107
39 R. J., Roberts M. O. Carneiro M. Schatz (2013). The advantages of SMRT sequencing. Genome Biol., 14 : 405
https://doi.org/10.1186/gb-2013-14-6-405
40 M., Bibikova B., Barnes C., Tsan V., Ho B., Klotzle J. M., Le D., Delano L., Zhang G. P., Schroth K. L. Gunderson et al.. (2011). High density DNA methylation array with single CpG site resolution. Genomics, 98 : 288–295
https://doi.org/10.1016/j.ygeno.2011.07.007
41 S., Moran C. Arribas (2016). Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics, 8 : 389–399
https://doi.org/10.2217/epi.15.114
42 S., Fan J., Tang N., Li Y., Zhao R., Ai K., Zhang M., Wang W. Du (2019). Integrative analysis with expanded DNA methylation data reveals common key regulators and pathways in cancers. NPJ Genom. Med., 4 : 2
https://doi.org/10.1038/s41525-019-0077-8
43 H., Guo P., Zhu X., Wu X., Li L. Wen (2013). Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res., 23 : 2126–2135
https://doi.org/10.1101/gr.161679.113
44 M., Farlik N. C., Sheffield A., Nuzzo P., Datlinger A., negger J. Klughammer (2015). Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep., 10 : 1386–1397
https://doi.org/10.1016/j.celrep.2015.02.001
45 P., Zhu H., Guo Y., Ren Y., Hou J., Dong R., Li Y., Lian X., Fan B., Hu Y. Gao et al.. (2018). Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet., 50 : 12–19
https://doi.org/10.1038/s41588-017-0007-6
46 H., Guo P., Zhu L., Yan R., Li B., Hu Y., Lian J., Yan X., Ren S., Lin J. Li et al.. (2014). The DNA methylation landscape of human early embryos. Nature, 511 : 606–610
https://doi.org/10.1038/nature13544
47 L., Han H. J., Wu H., Zhu K. Y., Kim S. L., Marjani M., Riester G., Euskirchen X., Zi J., Yang J. Han et al.. (2017). Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Res., 45 : e77
https://doi.org/10.1093/nar/gkx026
48 P. Y., Chen S. J. Cokus (2010). BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics, 11 : 203
https://doi.org/10.1186/1471-2105-11-203
49 W., Guo P., Fiziev W., Yan S., Cokus X., Sun M. Q., Zhang P. Y. Chen (2013). BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics, 14 : 774
https://doi.org/10.1186/1471-2164-14-774
50 K. Y. Y., Huang Y. J. Huang P. Chen (2018). BS-Seeker3: ultrafast pipeline for bisulfite sequencing. BMC Bioinformatics, 19 : 111
https://doi.org/10.1186/s12859-018-2120-7
51 H. M., Byun K. D., Siegmund F., Pan D. J., Weisenberger G., Kanel P. W. Laird A. Yang (2009). Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet., 18 : 4808–4817
https://doi.org/10.1093/hmg/ddp445
52 M., Caliskan D. A., Cusanovich C. Ober (2012). The effects of EBV transformation on gene expression levels and methylation profiles. Hum. Mol. Genet., 20 : 1643–1652
https://doi.org/10.1093/hmg/dds027
53 L. S., Zou M. R., Erdos D. L., Taylor P. S., Chines A., Varshney S. C. J., Parker F. S., Collins J. P. Didion M. G. Inst (2018). BoostMe accurately predicts DNA methylation values in whole-genome bisulfite sequencing of multiple human tissues. BMC Genomics, 19 : 390
https://doi.org/10.1186/s12864-018-4766-y
54 W., Zhang T. D., Spector P., Deloukas J. T. Bell B. Engelhardt (2015). Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol., 16 : 14
https://doi.org/10.1186/s13059-015-0581-9
55 F., Fang S., Fan X. Zhang M. Zhang (2006). Predicting methylation status of CpG islands in the human brain. Bioinformatics, 22 : 2204–2209
https://doi.org/10.1093/bioinformatics/btl377
56 B., Ma E. H., Wilker S. A. G., Willis-Owen H. M., Byun K. C. C., Wong V., Motta A. A., Baccarelli J., Schwartz W. O. C. M., Cookson K. Khabbaz et al.. (2014). Predicting DNA methylation level across human tissues. Nucleic Acids Res., 42 : 3515–3528
https://doi.org/10.1093/nar/gkt1380
57 M., Pavlovic P., Ray K., Pavlovic A., Kotamarti M. Chen M. Zhang (2017). DIRECTION: a machine learning framework for predicting and characterizing DNA methylation and hydroxymethylation in mammalian genomes. Bioinformatics, 33 : 2986–2994
https://doi.org/10.1093/bioinformatics/btx316
58 B., Ma C., Allard L., Bouchard P., Perron M. A., Mittleman M. F. Hivert (2019). Locus-specific DNA methylation prediction in cord blood and placenta. Epigenetics, 14 : 405–420
https://doi.org/10.1080/15592294.2019.1588685
59 Q., Tian J., Zou J., Tang Y., Fang Z. Yu (2019). MRCNN: a deep learning model for regression of genome-wide DNA methylation. BMC Genomics, 20 : 192
https://doi.org/10.1186/s12864-019-5488-5
60 S., Fan K., Huang R., Ai M. Wang (2016). Predicting CpG methylation levels by integrating Infinium HumanMethylation450 BeadChip array data. Genomics, 107 : 132–137
https://doi.org/10.1016/j.ygeno.2016.02.005
61 S., Fan C., Li R., Ai M., Wang G. S. Firestein (2016). Computationally expanding infinium HumanMethylation450 BeadChip array data to reveal distinct DNA methylation patterns of rheumatoid arthritis. Bioinformatics, 32 : 1773–1778
https://doi.org/10.1093/bioinformatics/btw089
62 Y., Zheng B. T., Joyce L., Liu Z., Zhang W. A., Kibbe W. Zhang (2017). Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res., 45 : 8697–8711
https://doi.org/10.1093/nar/gkx587
63 G., Li L., Raffield M., Logue M. W., Miller H. P., Santos T. M., Shea R. C. Fry (2020). CUE: CpG imputation ensemble for DNA methylation levels across the human methylation450 (hm450) and epic (hm850) beadchip platforms. Epigenetics, 16 : 851–861
https://doi.org/10.1080/15592294.2020.1827716
64 J., Tang J., Zou X., Zhang M., Fan Q., Tian S., Fu S. Gao (2020). PretiMeth: precise prediction models for DNA methylation based on single methylation mark. BMC Genomics, 21 : 364
https://doi.org/10.1186/s12864-020-6768-9
65 F., Yu C., Xu H. W. Deng (2020). A novel computational strategy for DNA methylation imputation using mixture regression model (MRM). BMC Bioinformatics, 21 : 552
https://doi.org/10.1186/s12859-020-03865-z
66 C., Angermueller H. J., Lee W. Reik (2017). DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol., 18 : 67
https://doi.org/10.1186/s13059-017-1189-z
67 L., Jiang C., Wang J. Tang (2019). LightCpG: a multi-view CpG sites detection on single-cell whole genome sequence data. BMC Genomics, 20 : 306
https://doi.org/10.1186/s12864-019-5654-9
68 C. A. Kapourani (2019). Melissa: Bayesian clustering and imputation of single-cell methylomes. Genome Biol., 20 : 61
https://doi.org/10.1186/s13059-019-1665-8
69 C., P E de Souza M., Andronescu T., Masud F., Kabeer J., Biele E., Laks D., Lai P., Ye J., Brimhall B. Wang et al.. (2020). Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data. PLOS Comput. Biol., 16 : e1008270
https://doi.org/10.1371/journal.pcbi.1008270
70 J., Tang J., Zou M., Fan Q., Tian J. Zhang (2021). CaMelia: imputation in single-cell methylomes based on local similarities between cells. Bioinformatics, 37 : btab029
https://doi.org/10.1093/bioinformatics/btab029
71 J., Su H., Yan Y., Wei H., Liu H., Liu F., Wang J., Lv Q. Wu (2013). CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res., 41 : e4
https://doi.org/10.1093/nar/gks829
72 Y., Park M. E., Figueroa L. S. Rozek M. Sartor (2014). MethylSig: a whole genome DNA methylation analysis pipeline. Bioinformatics, 30 : 2414–2422
https://doi.org/10.1093/bioinformatics/btu339
73 B., Zhang Y., Zhou N., Lin R. F., Lowdon C., Hong R. P., Nagarajan J. B., Cheng D., Li M., Stevens H. J. Lee et al.. (2013). Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Res., 23 : 1522–1540
https://doi.org/10.1101/gr.156539.113
74 K., Korthauer S., Chakraborty Y. Benjamini R. Irizarry (2019). Detection and accurate false discovery rate control of differentially methylated regions from whole genome bisulfite sequencing. Biostatistics, 20 : 367–383
https://doi.org/10.1093/biostatistics/kxy007
75 D., Wu J. Gu M. Zhang (2013). FastDMA: an infinium humanmethylation450 beadchip analyzer. PLoS One, 8 : e74275
https://doi.org/10.1371/journal.pone.0074275
76 L., Shen J., Zhu S. Y. Robert Li (2017). Detect differentially methylated regions using non-homogeneous hidden Markov model for methylation array data. Bioinformatics, 33 : 3701–3708
https://doi.org/10.1093/bioinformatics/btx467
77 Y., Zhang H., Liu J., Lv X., Xiao J., Zhu X., Liu J., Su X., Li Q., Wu F. Wang et al.. (2011). QDMR: a quantitative method for identification of differentially methylated regions by entropy. Nucleic Acids Res., 39 : e58
https://doi.org/10.1093/nar/gkr053
78 W. Lee J. Morris (2016). Identification of differentially methylated loci using wavelet-based functional mixed models. Bioinformatics, 32 : 664–672
https://doi.org/10.1093/bioinformatics/btv659
79 W. Denault. R. P. and Jugessur, A. (2021) Detecting differentially methylated regions using a fast wavelet-based approach to functional association analysis. BMC Bioinformatics, BMC Bioinformatics. 22, 61. doi: 10.1186/s12859–021-03979-y
80 H., Wu T., Xu H., Feng L., Chen B., Li B., Yao Z., Qin P. Jin K. Conneely (2015). Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res., 43 : e141
https://doi.org/10.1093/nar/gkv715
81 A., Akalin M., Kormaksson S., Li F. E., Garrett-Bakelman M. E., Figueroa A. Melnick C. Mason (2012). methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol., 13 : R87
https://doi.org/10.1186/gb-2012-13-10-r87
82 H. Feng (2019). Differential methylation analysis for bisulfite sequencing using DSS. Quant. Biol., 7 : 327–334
https://doi.org/10.1007/s40484-019-0183-8
83 A. Nishiyama (2021). Navigating the DNA methylation landscape of cancer. Trends Genet., 37 : 1012–1027
https://doi.org/10.1016/j.tig.2021.05.002
84 A. P., Feinberg M. A. Koldobskiy (2016). Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet., 17 : 284–299
https://doi.org/10.1038/nrg.2016.13
85 D. Hanahan R. Weinberg (2011). Hallmarks of cancer: the next generation. Cell, 144 : 646–674
https://doi.org/10.1016/j.cell.2011.02.013
86 O. G., McDonald X., Li T., Saunders R., Tryggvadottir S. J., Mentch M. O., Warmoes A. E., Word A., Carrer T. H., Salz S. Natsume et al.. (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet., 49 : 367–376
https://doi.org/10.1038/ng.3753
87 J. R., Glossop N. B., Nixon R. D., Emes J., Sim J. C., Packham D. L., Mattey W. E. Farrell A. Fryer (2017). DNA methylation at diagnosis is associated with response to disease-modifying drugs in early rheumatoid arthritis. Epigenomics, 9 : 419–428
https://doi.org/10.2217/epi-2016-0042
88 Z. H., Sun Y. H., Liu J. D., Liu D. D., Xu X. F., Li X. M., Meng T. T., Ma C. Huang (2017). Mecp2 regulates ptch1 expression through DNA methylation in rheumatoid arthritis. Inflammation, 40 : 1497–1508
https://doi.org/10.1007/s10753-017-0591-8
89 R., Ai D., Hammaker D. L., Boyle R., Morgan A. M., Walsh S., Fan G. S. Firestein (2016). Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun., 7 : 11849
https://doi.org/10.1038/ncomms11849
90 R., Ai T., Laragione D., Hammaker D. L., Boyle A., Wildberg K., Maeshima E., Palescandolo V., Krishna D., Pocalyko J. W. Whitaker et al.. (2018). Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun., 9 : 1921
https://doi.org/10.1038/s41467-018-04310-9
91 K. V. E., Braun K., Dhana P. S., de Vries T., Voortman J. B. J., van Meurs A. G., Uitterlinden A., Hofman F. B., Hu O. H. Franco (2017). Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin. Epigenetics, 9 : 15
https://doi.org/10.1186/s13148-016-0304-4
92 Z., Liu X., Li J. T., Zhang Y. J., Cai T. L., Cheng C., Cheng Y., Wang C. C., Zhang Y. H., Nie Z. F. Chen et al.. (2016). Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature, 530 : 98–102
https://doi.org/10.1038/nature16533
93 I. E., Eryilmaz G., Cecener S., Erer U., Egeli B., Tunca M., Zarifoglu B., Elibol A., Bora Tokcaer E., Saka M. Demirkiran et al.. (2017). Epigenetic approach to early-onset Parkinson’s disease: low methylation status of SNCA and PARK2 promoter regions. Neurol. Res., 39 : 965–972
https://doi.org/10.1080/01616412.2017.1368141
94 S. Horvath (2013). DNA methylation age of human tissues and cell types. Genome Biol., 14 : R115
https://doi.org/10.1186/gb-2013-14-10-r115
95 M. J., Pajares C., Palanca-Ballester R., Urtasun E., Alemany-Cosme A. Lahoz (2021). Methods for analysis of specific DNA methylation status. Methods, 187 : 3–12
https://doi.org/10.1016/j.ymeth.2020.06.021
96 S. Mallik (2017). Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles. Quant. Biol., 5 : 302–327
https://doi.org/10.1007/s40484-017-0119-0
97 R., van den Helder B. M. M., Wever N. E., van Trommel A. P., van Splunter C. H., Mom J. C., Kasius M. C. G. Bleeker R. D. Steenbergen (2020). Non-invasive detection of endometrial cancer by DNA methylation analysis in urine. Clin. Epigenetics, 12 : 165
https://doi.org/10.1186/s13148-020-00958-7
98 N., Wentzensen J. N., Bakkum-Gamez J. K., Killian J., Sampson R., Guido A., Glass L., Adams P., Luhn L. A., Brinton B. Rush et al.. (2014). Discovery and validation of methylation markers for endometrial cancer. Int. J. Cancer, 135 : 1860–1868
https://doi.org/10.1002/ijc.28843
99 Y. K., Mao Z. B. Liu (2020). Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol. Lett., 20 : 1619–1628
https://doi.org/10.3892/ol.2020.11729
100 J., Zhao L., Wang D., Kong G. Hu (2020). Construction of novel DNA methylation-based prognostic model to predict survival in glioblastoma. J. Comput. Biol., 27 : 718–728
https://doi.org/10.1089/cmb.2019.0125
101 H., Harada K., Miyamoto Y., Yamashita K., Nakano K., Taniyama Y., Miyata H. Ohdan (2013). Methylation of breast cancer susceptibility gene 1 (BRCA1) predicts recurrence in patients with curatively resected stage I non-small cell lung cancer. Cancer, 119 : 792–798
https://doi.org/10.1002/cncr.27754
102 S., Graw K., Chappell C. L., Washam A., Gies J., Bird M. S. Robeson S. Byrum (2021). Multi-omics data integration considerations and study design for biological systems and disease. Mol. Omics, 17 : 170–185
https://doi.org/10.1039/D0MO00041H
103 S., Cao Y., Zhao Y., Wu T., Song A. Burair (2017). Transcription regulation by DNA methylation under stressful conditions in human cancer. Quant. Biol., 5 : 328–337
https://doi.org/10.1007/s40484-017-0129-y
104 P. S., Reel S., Reel E., Pearson E. Trucco (2021). Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv., 49 : 107739
https://doi.org/10.1016/j.biotechadv.2021.107739
105 T. Ma (2019). Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). BMC Genomics, 20 : 944
https://doi.org/10.1186/s12864-019-6285-x
106 N. Rappoport (2018). Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res., 46 : 10546–10562
https://doi.org/10.1093/nar/gky889
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed