|
|
|
The progress on the estimation of DNA methylation level and the detection of abnormal methylation |
Shicai Fan1,2( ), Likun Wang3, Liang Liang4, Xiaohong Cao5, Jianxiong Tang2, Qi Tian2 |
1. Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China 2. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 3. Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China 4. Cancer Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China 5. Department of Geriatric Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China |
|
|
Abstract: Background: DNA methylation is a key heritable epigenetic modification that plays a crucial role in transcriptional regulation and therefore a broad range of biological processes. The complex patterns of DNA methylation highlight the significance of the profiling the DNA methylation landscape. Results: In this review, the main high-throughput detection technologies are summarized, and then the three trends of computational estimation of DNA methylation levels were analyzed, especially the expanding of the methylation data with lower coverage. Furthermore, the detection methods of differential methylation patterns for sequencing and array data were presented. Conclusions: More and more research indicated the great importance of DNA methylation changes across different diseases, such as cancers. Although a lot of enormous progress has been made in understanding the role of DNA methylation, only few methylated genes or functional elements serve as clinically relevant cancer biomarkers. The bottleneck in DNA methylation advances has shifted from data generation to data analysis. Therefore, it is meaningful to develop machine learning models for computational estimation of methylation profiling and identify the potential biomarkers. |
Key words:
DNA methylation
genome-wide profiling
computational estimation
single-cell methylome
differential methylation detection
|
收稿日期: 2021-08-12
出版日期: 2022-03-28
|
Corresponding Author(s):
Shicai Fan
|
作者简介: Peng Lu, Renxing Wang, and Yue Xing contributed equally to this work. |
1 |
A. Bird (1986). CpG-rich islands and the function of DNA methylation. Nature, 321 : 209–213
https://doi.org/10.1038/321209a0
|
2 |
W. Reik (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet., 2 : 21–32
https://doi.org/10.1038/35047554
|
3 |
W., Reik W. Dean (2001). Epigenetic reprogramming in mammalian development. Science, 293 : 1089–1093
https://doi.org/10.1126/science.1063443
|
4 |
T., Mohandas R. S. Sparkes L. Shapiro (1981). Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science, 211 : 393–396
https://doi.org/10.1126/science.6164095
|
5 |
S. M. Gartler A. Riggs (1983). Mammalian X-chromosome inactivation. Annu. Rev. Genet., 17 : 155–190
https://doi.org/10.1146/annurev.ge.17.120183.001103
|
6 |
W., Reik A., Collick M. L., Norris S. C. Barton M. Surani (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, 328 : 248–251
https://doi.org/10.1038/328248a0
|
7 |
S., Chen G., Yan W., Zhang J., Li R. Jiang (2021). RA3 is a reference-guided approach for epigenetic characterization of single cells. Nat. Commun., 12 : 2177
https://doi.org/10.1038/s41467-021-22495-4
|
8 |
Q., Liu F., Xia Q. Yin (2018). Chromatin accessibility prediction via a hybrid deep convolutional neural network. Bioinformatics, 34 : 732–738
https://doi.org/10.1093/bioinformatics/btx679
|
9 |
S. B. Baylin P. Jones (2011). A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer, 11 : 726–734
https://doi.org/10.1038/nrc3130
|
10 |
K., Skvortsova C. Stirzaker (2019). The DNA methylation landscape in cancer. Essays Biochem., 63 : 797–811
https://doi.org/10.1042/EBC20190037
|
11 |
S. Fan (2016). Methods for genome-wide DNA methylation analysis in human cancer. Brief. Funct. Genomics, 15 : 432–442
https://doi.org/10.1093/bfgp/elw010
|
12 |
P. Laird (2010). Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet., 11 : 191–203
https://doi.org/10.1038/nrg2732
|
13 |
C. Bock (2012). Analysing and interpreting DNA methylation data. Nat. Rev. Genet., 13 : 705–719
https://doi.org/10.1038/nrg3273
|
14 |
S. J., Cokus S., Feng X., Zhang Z., Chen B., Merriman C. D., Haudenschild S., Pradhan S. F., Nelson M. Pellegrini S. Jacobsen (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452 : 215–219
https://doi.org/10.1038/nature06745
|
15 |
S., Friso S. W., Choi G. G. Dolnikowski (2002). A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal. Chem., 74 : 4526–4531
https://doi.org/10.1021/ac020050h
|
16 |
S., Lisanti W. A., Omar B., Tomaszewski S., De Prins G., Jacobs G., Koppen J. C. Mathers S. Langie (2013). Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One, 8 : e79044
https://doi.org/10.1371/journal.pone.0079044
|
17 |
R., Lister R. C., Malley J., Tonti-Filippini B. D., Gregory C. C., Berry A. H. Millar J. Ecker (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133 : 523–536
https://doi.org/10.1016/j.cell.2008.03.029
|
18 |
T. K., Kelly Y., Liu F. D., Lay G., Liang B. P. Berman P. Jones (2012). Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res., 22 : 2497–2506
https://doi.org/10.1101/gr.143008.112
|
19 |
M., Weber J. J., Davies D., Wittig E. J., Oakeley M., Haase W. L. Lam (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet., 37 : 853–862
https://doi.org/10.1038/ng1598
|
20 |
R., Pidsley E., Zotenko T. J., Peters M. G., Lawrence G. P., Risbridger P., Molloy S., Van Djik B., Muhlhausler C. Stirzaker S. Clark (2016). Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol., 17 : 208
https://doi.org/10.1186/s13059-016-1066-1
|
21 |
F., Eckhardt J., Lewin R., Cortese V. K., Rakyan J., Attwood M., Burger J., Burton T. V., Cox R., Davies T. A. Down et al.. (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet., 38 : 1378–1385
https://doi.org/10.1038/ng1909
|
22 |
Y., Tian T. J., Morris A. P., Webster Z., Yang S., Beck A. Feber A. Teschendorff (2017). ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 33 : 3982–3984
https://doi.org/10.1093/bioinformatics/btx513
|
23 |
S. A., Smallwood H. J., Lee C., Angermueller F., Krueger H., Saadeh J., Peat S. R., Andrews O., Stegle W. Reik (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods, 11 : 817–820
https://doi.org/10.1038/nmeth.3035
|
24 |
C., Angermueller S. J., Clark H. J., Lee I. C., Macaulay M. J., Teng T. X., Hu F., Krueger S., Smallwood C. P., Ponting T. Voet et al.. (2016). Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods, 13 : 229–232
https://doi.org/10.1038/nmeth.3728
|
25 |
S. Pott (2017). Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife, e23203
https://doi.org/10.7554/eLife.23203
|
26 |
Y., Wang A., Wang Z., Liu A. L., Thurman L. S., Powers M., Zou Y., Zhao A., Hefel Y., Li J. Zabner et al.. (2019). Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res., 29 : 1329–1342
https://doi.org/10.1101/gr.251116.119
|
27 |
H., Gu A. T., Raman X., Wang F., Gaiti R., Chaligne A. W., Mohammad A., Arczewska Z. D., Smith D. A., Landau M. J. Aryee et al.. (2021). Smart-RRBS for single-cell methylome and transcriptome analysis. Nat. Protoc., 16 : 4004–4030
https://doi.org/10.1038/s41596-021-00571-9
|
28 |
W. S., Yong F. M. Hsu P. Chen (2016). Profiling genome-wide DNA methylation. Epigenet Chromatin. 9, 26
https://doi.org/10.1186/s13072-016-0075-3
|
29 |
R. A., Dirks H. G. Stunnenberg (2016). Genome-wide epigenomic profiling for biomarker discovery. Clin. Epigenetics, 8 : 122
https://doi.org/10.1186/s13148-016-0284-4
|
30 |
I., Rauluseviciute M. Rye (2019). DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis. Clin. Epigenetics, 11 : 193
https://doi.org/10.1186/s13148-019-0795-x
|
31 |
T., Zuo B., Tycko T. M., Liu J. J. Lin T. Huang (2009). Methods in DNA methylation profiling. Epigenomics, 1 : 331–345
https://doi.org/10.2217/epi.09.31
|
32 |
S. Li T. Tollefsbol (2021). DNA methylation methods: Global DNA methylation and methylomic analyses. Methods, 187 : 28–43
https://doi.org/10.1016/j.ymeth.2020.10.002
|
33 |
I. Arora T. Tollefsbol (2021). Computational methods and next-generation sequencing approaches to analyze epigenetics data: Profiling of methods and applications. Methods, 187 : 92–103
https://doi.org/10.1016/j.ymeth.2020.09.008
|
34 |
D., Li B., Zhang X. Xing (2015). Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. Methods, 72 : 29–40
https://doi.org/10.1016/j.ymeth.2014.10.032
|
35 |
A. K., Maunakea R. P., Nagarajan M., Bilenky T. J., Ballinger C., Souza S. D., Fouse B. E., Johnson C., Hong C., Nielsen Y. Zhao et al.. (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466 : 253–257
https://doi.org/10.1038/nature09165
|
36 |
B. E., Bernstein J. A., Stamatoyannopoulos J. F., Costello B., Ren A., Milosavljevic A., Meissner M., Kellis M. A., Marra A. L., Beaudet J. R. Ecker et al.. (2010). The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol., 28 : 1045–1048
https://doi.org/10.1038/nbt1010-1045
|
37 |
I., Dunham A., Kundaje S. F., Aldred P. J., Collins C., Davis F., Doyle C. B., Epstein S., Frietze J., Harrow R. Kaul et al.. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489 : 57–74
https://doi.org/10.1038/nature11247
|
38 |
A., Meissner T. S., Mikkelsen H., Gu M., Wernig J., Hanna A., Sivachenko X., Zhang B. E., Bernstein C., Nusbaum D. B. Jaffe et al.. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454 : 766–770
https://doi.org/10.1038/nature07107
|
39 |
R. J., Roberts M. O. Carneiro M. Schatz (2013). The advantages of SMRT sequencing. Genome Biol., 14 : 405
https://doi.org/10.1186/gb-2013-14-6-405
|
40 |
M., Bibikova B., Barnes C., Tsan V., Ho B., Klotzle J. M., Le D., Delano L., Zhang G. P., Schroth K. L. Gunderson et al.. (2011). High density DNA methylation array with single CpG site resolution. Genomics, 98 : 288–295
https://doi.org/10.1016/j.ygeno.2011.07.007
|
41 |
S., Moran C. Arribas (2016). Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics, 8 : 389–399
https://doi.org/10.2217/epi.15.114
|
42 |
S., Fan J., Tang N., Li Y., Zhao R., Ai K., Zhang M., Wang W. Du (2019). Integrative analysis with expanded DNA methylation data reveals common key regulators and pathways in cancers. NPJ Genom. Med., 4 : 2
https://doi.org/10.1038/s41525-019-0077-8
|
43 |
H., Guo P., Zhu X., Wu X., Li L. Wen (2013). Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res., 23 : 2126–2135
https://doi.org/10.1101/gr.161679.113
|
44 |
M., Farlik N. C., Sheffield A., Nuzzo P., Datlinger A., negger J. Klughammer (2015). Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep., 10 : 1386–1397
https://doi.org/10.1016/j.celrep.2015.02.001
|
45 |
P., Zhu H., Guo Y., Ren Y., Hou J., Dong R., Li Y., Lian X., Fan B., Hu Y. Gao et al.. (2018). Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet., 50 : 12–19
https://doi.org/10.1038/s41588-017-0007-6
|
46 |
H., Guo P., Zhu L., Yan R., Li B., Hu Y., Lian J., Yan X., Ren S., Lin J. Li et al.. (2014). The DNA methylation landscape of human early embryos. Nature, 511 : 606–610
https://doi.org/10.1038/nature13544
|
47 |
L., Han H. J., Wu H., Zhu K. Y., Kim S. L., Marjani M., Riester G., Euskirchen X., Zi J., Yang J. Han et al.. (2017). Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Res., 45 : e77
https://doi.org/10.1093/nar/gkx026
|
48 |
P. Y., Chen S. J. Cokus (2010). BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics, 11 : 203
https://doi.org/10.1186/1471-2105-11-203
|
49 |
W., Guo P., Fiziev W., Yan S., Cokus X., Sun M. Q., Zhang P. Y. Chen (2013). BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics, 14 : 774
https://doi.org/10.1186/1471-2164-14-774
|
50 |
K. Y. Y., Huang Y. J. Huang P. Chen (2018). BS-Seeker3: ultrafast pipeline for bisulfite sequencing. BMC Bioinformatics, 19 : 111
https://doi.org/10.1186/s12859-018-2120-7
|
51 |
H. M., Byun K. D., Siegmund F., Pan D. J., Weisenberger G., Kanel P. W. Laird A. Yang (2009). Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet., 18 : 4808–4817
https://doi.org/10.1093/hmg/ddp445
|
52 |
M., Caliskan D. A., Cusanovich C. Ober (2012). The effects of EBV transformation on gene expression levels and methylation profiles. Hum. Mol. Genet., 20 : 1643–1652
https://doi.org/10.1093/hmg/dds027
|
53 |
L. S., Zou M. R., Erdos D. L., Taylor P. S., Chines A., Varshney S. C. J., Parker F. S., Collins J. P. Didion M. G. Inst (2018). BoostMe accurately predicts DNA methylation values in whole-genome bisulfite sequencing of multiple human tissues. BMC Genomics, 19 : 390
https://doi.org/10.1186/s12864-018-4766-y
|
54 |
W., Zhang T. D., Spector P., Deloukas J. T. Bell B. Engelhardt (2015). Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol., 16 : 14
https://doi.org/10.1186/s13059-015-0581-9
|
55 |
F., Fang S., Fan X. Zhang M. Zhang (2006). Predicting methylation status of CpG islands in the human brain. Bioinformatics, 22 : 2204–2209
https://doi.org/10.1093/bioinformatics/btl377
|
56 |
B., Ma E. H., Wilker S. A. G., Willis-Owen H. M., Byun K. C. C., Wong V., Motta A. A., Baccarelli J., Schwartz W. O. C. M., Cookson K. Khabbaz et al.. (2014). Predicting DNA methylation level across human tissues. Nucleic Acids Res., 42 : 3515–3528
https://doi.org/10.1093/nar/gkt1380
|
57 |
M., Pavlovic P., Ray K., Pavlovic A., Kotamarti M. Chen M. Zhang (2017). DIRECTION: a machine learning framework for predicting and characterizing DNA methylation and hydroxymethylation in mammalian genomes. Bioinformatics, 33 : 2986–2994
https://doi.org/10.1093/bioinformatics/btx316
|
58 |
B., Ma C., Allard L., Bouchard P., Perron M. A., Mittleman M. F. Hivert (2019). Locus-specific DNA methylation prediction in cord blood and placenta. Epigenetics, 14 : 405–420
https://doi.org/10.1080/15592294.2019.1588685
|
59 |
Q., Tian J., Zou J., Tang Y., Fang Z. Yu (2019). MRCNN: a deep learning model for regression of genome-wide DNA methylation. BMC Genomics, 20 : 192
https://doi.org/10.1186/s12864-019-5488-5
|
60 |
S., Fan K., Huang R., Ai M. Wang (2016). Predicting CpG methylation levels by integrating Infinium HumanMethylation450 BeadChip array data. Genomics, 107 : 132–137
https://doi.org/10.1016/j.ygeno.2016.02.005
|
61 |
S., Fan C., Li R., Ai M., Wang G. S. Firestein (2016). Computationally expanding infinium HumanMethylation450 BeadChip array data to reveal distinct DNA methylation patterns of rheumatoid arthritis. Bioinformatics, 32 : 1773–1778
https://doi.org/10.1093/bioinformatics/btw089
|
62 |
Y., Zheng B. T., Joyce L., Liu Z., Zhang W. A., Kibbe W. Zhang (2017). Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res., 45 : 8697–8711
https://doi.org/10.1093/nar/gkx587
|
63 |
G., Li L., Raffield M., Logue M. W., Miller H. P., Santos T. M., Shea R. C. Fry (2020). CUE: CpG imputation ensemble for DNA methylation levels across the human methylation450 (hm450) and epic (hm850) beadchip platforms. Epigenetics, 16 : 851–861
https://doi.org/10.1080/15592294.2020.1827716
|
64 |
J., Tang J., Zou X., Zhang M., Fan Q., Tian S., Fu S. Gao (2020). PretiMeth: precise prediction models for DNA methylation based on single methylation mark. BMC Genomics, 21 : 364
https://doi.org/10.1186/s12864-020-6768-9
|
65 |
F., Yu C., Xu H. W. Deng (2020). A novel computational strategy for DNA methylation imputation using mixture regression model (MRM). BMC Bioinformatics, 21 : 552
https://doi.org/10.1186/s12859-020-03865-z
|
66 |
C., Angermueller H. J., Lee W. Reik (2017). DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol., 18 : 67
https://doi.org/10.1186/s13059-017-1189-z
|
67 |
L., Jiang C., Wang J. Tang (2019). LightCpG: a multi-view CpG sites detection on single-cell whole genome sequence data. BMC Genomics, 20 : 306
https://doi.org/10.1186/s12864-019-5654-9
|
68 |
C. A. Kapourani (2019). Melissa: Bayesian clustering and imputation of single-cell methylomes. Genome Biol., 20 : 61
https://doi.org/10.1186/s13059-019-1665-8
|
69 |
C., P E de Souza M., Andronescu T., Masud F., Kabeer J., Biele E., Laks D., Lai P., Ye J., Brimhall B. Wang et al.. (2020). Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data. PLOS Comput. Biol., 16 : e1008270
https://doi.org/10.1371/journal.pcbi.1008270
|
70 |
J., Tang J., Zou M., Fan Q., Tian J. Zhang (2021). CaMelia: imputation in single-cell methylomes based on local similarities between cells. Bioinformatics, 37 : btab029
https://doi.org/10.1093/bioinformatics/btab029
|
71 |
J., Su H., Yan Y., Wei H., Liu H., Liu F., Wang J., Lv Q. Wu (2013). CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res., 41 : e4
https://doi.org/10.1093/nar/gks829
|
72 |
Y., Park M. E., Figueroa L. S. Rozek M. Sartor (2014). MethylSig: a whole genome DNA methylation analysis pipeline. Bioinformatics, 30 : 2414–2422
https://doi.org/10.1093/bioinformatics/btu339
|
73 |
B., Zhang Y., Zhou N., Lin R. F., Lowdon C., Hong R. P., Nagarajan J. B., Cheng D., Li M., Stevens H. J. Lee et al.. (2013). Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Res., 23 : 1522–1540
https://doi.org/10.1101/gr.156539.113
|
74 |
K., Korthauer S., Chakraborty Y. Benjamini R. Irizarry (2019). Detection and accurate false discovery rate control of differentially methylated regions from whole genome bisulfite sequencing. Biostatistics, 20 : 367–383
https://doi.org/10.1093/biostatistics/kxy007
|
75 |
D., Wu J. Gu M. Zhang (2013). FastDMA: an infinium humanmethylation450 beadchip analyzer. PLoS One, 8 : e74275
https://doi.org/10.1371/journal.pone.0074275
|
76 |
L., Shen J., Zhu S. Y. Robert Li (2017). Detect differentially methylated regions using non-homogeneous hidden Markov model for methylation array data. Bioinformatics, 33 : 3701–3708
https://doi.org/10.1093/bioinformatics/btx467
|
77 |
Y., Zhang H., Liu J., Lv X., Xiao J., Zhu X., Liu J., Su X., Li Q., Wu F. Wang et al.. (2011). QDMR: a quantitative method for identification of differentially methylated regions by entropy. Nucleic Acids Res., 39 : e58
https://doi.org/10.1093/nar/gkr053
|
78 |
W. Lee J. Morris (2016). Identification of differentially methylated loci using wavelet-based functional mixed models. Bioinformatics, 32 : 664–672
https://doi.org/10.1093/bioinformatics/btv659
|
79 |
W. Denault. R. P. and Jugessur, A. (2021) Detecting differentially methylated regions using a fast wavelet-based approach to functional association analysis. BMC Bioinformatics, BMC Bioinformatics. 22, 61. doi: 10.1186/s12859–021-03979-y
|
80 |
H., Wu T., Xu H., Feng L., Chen B., Li B., Yao Z., Qin P. Jin K. Conneely (2015). Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res., 43 : e141
https://doi.org/10.1093/nar/gkv715
|
81 |
A., Akalin M., Kormaksson S., Li F. E., Garrett-Bakelman M. E., Figueroa A. Melnick C. Mason (2012). methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol., 13 : R87
https://doi.org/10.1186/gb-2012-13-10-r87
|
82 |
H. Feng (2019). Differential methylation analysis for bisulfite sequencing using DSS. Quant. Biol., 7 : 327–334
https://doi.org/10.1007/s40484-019-0183-8
|
83 |
A. Nishiyama (2021). Navigating the DNA methylation landscape of cancer. Trends Genet., 37 : 1012–1027
https://doi.org/10.1016/j.tig.2021.05.002
|
84 |
A. P., Feinberg M. A. Koldobskiy (2016). Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet., 17 : 284–299
https://doi.org/10.1038/nrg.2016.13
|
85 |
D. Hanahan R. Weinberg (2011). Hallmarks of cancer: the next generation. Cell, 144 : 646–674
https://doi.org/10.1016/j.cell.2011.02.013
|
86 |
O. G., McDonald X., Li T., Saunders R., Tryggvadottir S. J., Mentch M. O., Warmoes A. E., Word A., Carrer T. H., Salz S. Natsume et al.. (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet., 49 : 367–376
https://doi.org/10.1038/ng.3753
|
87 |
J. R., Glossop N. B., Nixon R. D., Emes J., Sim J. C., Packham D. L., Mattey W. E. Farrell A. Fryer (2017). DNA methylation at diagnosis is associated with response to disease-modifying drugs in early rheumatoid arthritis. Epigenomics, 9 : 419–428
https://doi.org/10.2217/epi-2016-0042
|
88 |
Z. H., Sun Y. H., Liu J. D., Liu D. D., Xu X. F., Li X. M., Meng T. T., Ma C. Huang (2017). Mecp2 regulates ptch1 expression through DNA methylation in rheumatoid arthritis. Inflammation, 40 : 1497–1508
https://doi.org/10.1007/s10753-017-0591-8
|
89 |
R., Ai D., Hammaker D. L., Boyle R., Morgan A. M., Walsh S., Fan G. S. Firestein (2016). Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun., 7 : 11849
https://doi.org/10.1038/ncomms11849
|
90 |
R., Ai T., Laragione D., Hammaker D. L., Boyle A., Wildberg K., Maeshima E., Palescandolo V., Krishna D., Pocalyko J. W. Whitaker et al.. (2018). Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun., 9 : 1921
https://doi.org/10.1038/s41467-018-04310-9
|
91 |
K. V. E., Braun K., Dhana P. S., de Vries T., Voortman J. B. J., van Meurs A. G., Uitterlinden A., Hofman F. B., Hu O. H. Franco (2017). Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin. Epigenetics, 9 : 15
https://doi.org/10.1186/s13148-016-0304-4
|
92 |
Z., Liu X., Li J. T., Zhang Y. J., Cai T. L., Cheng C., Cheng Y., Wang C. C., Zhang Y. H., Nie Z. F. Chen et al.. (2016). Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature, 530 : 98–102
https://doi.org/10.1038/nature16533
|
93 |
I. E., Eryilmaz G., Cecener S., Erer U., Egeli B., Tunca M., Zarifoglu B., Elibol A., Bora Tokcaer E., Saka M. Demirkiran et al.. (2017). Epigenetic approach to early-onset Parkinson’s disease: low methylation status of SNCA and PARK2 promoter regions. Neurol. Res., 39 : 965–972
https://doi.org/10.1080/01616412.2017.1368141
|
94 |
S. Horvath (2013). DNA methylation age of human tissues and cell types. Genome Biol., 14 : R115
https://doi.org/10.1186/gb-2013-14-10-r115
|
95 |
M. J., Pajares C., Palanca-Ballester R., Urtasun E., Alemany-Cosme A. Lahoz (2021). Methods for analysis of specific DNA methylation status. Methods, 187 : 3–12
https://doi.org/10.1016/j.ymeth.2020.06.021
|
96 |
S. Mallik (2017). Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles. Quant. Biol., 5 : 302–327
https://doi.org/10.1007/s40484-017-0119-0
|
97 |
R., van den Helder B. M. M., Wever N. E., van Trommel A. P., van Splunter C. H., Mom J. C., Kasius M. C. G. Bleeker R. D. Steenbergen (2020). Non-invasive detection of endometrial cancer by DNA methylation analysis in urine. Clin. Epigenetics, 12 : 165
https://doi.org/10.1186/s13148-020-00958-7
|
98 |
N., Wentzensen J. N., Bakkum-Gamez J. K., Killian J., Sampson R., Guido A., Glass L., Adams P., Luhn L. A., Brinton B. Rush et al.. (2014). Discovery and validation of methylation markers for endometrial cancer. Int. J. Cancer, 135 : 1860–1868
https://doi.org/10.1002/ijc.28843
|
99 |
Y. K., Mao Z. B. Liu (2020). Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol. Lett., 20 : 1619–1628
https://doi.org/10.3892/ol.2020.11729
|
100 |
J., Zhao L., Wang D., Kong G. Hu (2020). Construction of novel DNA methylation-based prognostic model to predict survival in glioblastoma. J. Comput. Biol., 27 : 718–728
https://doi.org/10.1089/cmb.2019.0125
|
101 |
H., Harada K., Miyamoto Y., Yamashita K., Nakano K., Taniyama Y., Miyata H. Ohdan (2013). Methylation of breast cancer susceptibility gene 1 (BRCA1) predicts recurrence in patients with curatively resected stage I non-small cell lung cancer. Cancer, 119 : 792–798
https://doi.org/10.1002/cncr.27754
|
102 |
S., Graw K., Chappell C. L., Washam A., Gies J., Bird M. S. Robeson S. Byrum (2021). Multi-omics data integration considerations and study design for biological systems and disease. Mol. Omics, 17 : 170–185
https://doi.org/10.1039/D0MO00041H
|
103 |
S., Cao Y., Zhao Y., Wu T., Song A. Burair (2017). Transcription regulation by DNA methylation under stressful conditions in human cancer. Quant. Biol., 5 : 328–337
https://doi.org/10.1007/s40484-017-0129-y
|
104 |
P. S., Reel S., Reel E., Pearson E. Trucco (2021). Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv., 49 : 107739
https://doi.org/10.1016/j.biotechadv.2021.107739
|
105 |
T. Ma (2019). Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). BMC Genomics, 20 : 944
https://doi.org/10.1186/s12864-019-6285-x
|
106 |
N. Rappoport (2018). Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res., 46 : 10546–10562
https://doi.org/10.1093/nar/gky889
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|