|
|
|
Distal nucleotides affect the rate of stop codon read-through |
Luciana I. Escobar1, Andres M. Alonso2, Jorge R. Ronderos3, Luis Diambra1( ) |
1. CREG, Universidad Nacional de La Plata-CONICET, La Plata CP 1900, Argentina 2. INTech, Universidad Nacional de San Martin, Chascomus CP 7130, Argentina 3. FCNyM, Universidad Nacional de La Plata, La Plata CP 1900, Argentina |
|
|
Abstract: Background: A key step in gene expression is the recognition of the stop codon to terminate translation at the correct position. However, it has been observed that ribosomes can misinterpret the stop codon and continue the translation in the 3′UTR region. This phenomenon is called stop codon read-through (SCR). It has been suggested that these events would occur on a programmed basis, but the underlying mechanisms are still not well understood. Methods: Here, we present a strategy for the comprehensive identification of SCR events in the Drosophila melanogaster transcriptome by evaluating the ribosomal density profiles. The associated ribosomal leak rate was estimated for every event identified. A statistical characterization of the frequency of nucleotide use in the proximal region to the stop codon in the sequences associated to SCR events was performed. Results: The results show that the nucleotide usage pattern in transcripts with the UGA codon is different from the pattern for those transcripts ending in the UAA codon, suggesting the existence of at least two mechanisms that could alter the translational termination process. Furthermore, a linear regression models for each of the three stop codons was developed, and we show that the models using the nucleotides at informative positions outperforms those models that consider the entire sequence context to the stop codon. Conclusions: We report that distal nucleotides can affect the SCR rate in a stop-codon dependent manner. |
Key words:
translational readthrough
stop codons
translational termination
ribosomal density profiles
nucleotide usage frequency
|
收稿日期: 2021-05-06
出版日期: 2023-03-13
|
Corresponding Author(s):
Luis Diambra
|
1 |
A., Brown, S., Shao, J., Murray, R. S. Hegde, (2015). Structural basis for stop codon recognition in eukaryotes. Nature, 524: 493–496
https://doi.org/10.1038/nature14896
|
2 |
M., Ryoji, K. Hsia, (1983). Read-through translation. Trends Biochem. Sci., 8: 88–90
https://doi.org/10.1016/0968-0004(83)90256-6
|
3 |
D. N. Robinson, (1997). Examination of the function of two kelch proteins generated by stop codon suppression. Development, 124: 1405–1417
https://doi.org/10.1242/dev.124.7.1405
|
4 |
I., Jungreis, M. F., Lin, R., Spokony, C. S., Chan, N., Negre, A., Victorsen, K. P. White, (2011). Evidence of abundant stop codon readthrough in Drosophila and other metazoa. Genome Res., 21: 2096–2113
https://doi.org/10.1101/gr.119974.110
|
5 |
J., Freitag, J. Ast, (2012). Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature, 485: 522–525
https://doi.org/10.1038/nature11051
|
6 |
G., Loughran, I., Jungreis, I., Tzani, M., Power, R. I., Dmitriev, I. P., Ivanov, M. Kellis, J. Atkins, (2018). Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. J. Biol. Chem., 293: 4434–4444
https://doi.org/10.1074/jbc.M117.818526
|
7 |
T. von der Haar, M. Tuite, (2007). Regulated translational bypass of stop codons in yeast. Trends Microbiol., 15: 78–86
https://doi.org/10.1016/j.tim.2006.12.002
|
8 |
G., Loughran, M. Y., Chou, I. P., Ivanov, I., Jungreis, M., Kellis, A. M., Kiran, P. V. Baranov, J. Atkins, (2014). Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res., 42: 8928–8938
https://doi.org/10.1093/nar/gku608
|
9 |
S. Eswarappa, A. Potdar, W. Koch, Y., Fan, K., Vasu, D., Lindner, B., Willard, L. Graham, P. DiCorleto, P. Fox, (2014). Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell, 157: 1605–1618
https://doi.org/10.1016/j.cell.2014.04.033
|
10 |
F. Schueren, (2016). Functional translational readthrough: A systems biology perspective. PLoS Genet., 12: e1006196
https://doi.org/10.1371/journal.pgen.1006196
|
11 |
R. B., Weiss, D. M., Dunn, J. F. Atkins, R. Gesteland, (1990). Ribosomal frameshifting from ‒2 to +50 nucleotides. Prog. Nucleic Acid Res. Mol. Biol., 39: 159–183
https://doi.org/10.1016/S0079-6603(08)60626-1
|
12 |
N. M., Wills, M., Connor, C. C., Nelson, C. C., Rettberg, W. M., Huang, R. F. Gesteland, J. Atkins, (2008). Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA. EMBO J., 27: 2533–2544
https://doi.org/10.1038/emboj.2008.170
|
13 |
H. Beier, (2001). Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res., 29: 4767–4782
https://doi.org/10.1093/nar/29.23.4767
|
14 |
A. E. Firth, (2012). Non-canonical translation in RNA viruses. J. Gen. Virol., 93: 1385–1409
https://doi.org/10.1099/vir.0.042499-0
|
15 |
P. Steneberg, (2001). A novel stop codon readthrough mechanism produces functional Headcase protein in Drosophila trachea. EMBO Rep., 2: 593–597
https://doi.org/10.1093/embo-reports/kve128
|
16 |
L., Harrell, U. Melcher, J. Atkins, (2002). Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res., 30: 2011–2017
https://doi.org/10.1093/nar/30.9.2011
|
17 |
M., Dabrowski, Z. Bukowy-Bieryllo, (2015). Translational readthrough potential of natural termination codons in eucaryotes―The impact of RNA sequence. RNA Biol., 12: 950–958
https://doi.org/10.1080/15476286.2015.1068497
|
18 |
A. G., Cridge, C., Crowe-McAuliffe, S. F. Mathew, W. Tate, (2018). Eukaryotic translational termination efficiency is influenced by the 3′ nucleotides within the ribosomal mRNA channel. Nucleic Acids Res., 46: 1927–1944
https://doi.org/10.1093/nar/gkx1315
|
19 |
M., Dabrowski, Z. Bukowy-Bieryllo, (2018). Advances in therapeutic use of a drug-stimulated translational readthrough of premature termination codons. Mol. Med., 24: 25
https://doi.org/10.1186/s10020-018-0024-7
|
20 |
M. T., Howard, B. H., Shirts, L. M., Petros, K. M., Flanigan, R. F. Gesteland, J. Atkins, (2000). Sequence specificity of aminoglycoside-induced stop condon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann. Neurol., 48: 164–169
https://doi.org/10.1002/1531-8249(200008)48:2<164::AID-ANA5>3.0.CO;2-B
|
21 |
L., Bidou, V., Allamand, J. Rousset, (2012). Sense from nonsense: therapies for premature stop codon diseases. Trends Mol. Med., 18: 679–688
https://doi.org/10.1016/j.molmed.2012.09.008
|
22 |
C., Floquet, I., Hatin, J. Rousset, (2012). Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet., 8: e1002608
https://doi.org/10.1371/journal.pgen.1002608
|
23 |
K. M., Keeling, X., Xue, G. Gunn, D. Bedwell, (2014). Therapeutics based on stop codon readthrough. Annu. Rev. Genomics Hum. Genet., 15: 371–394
https://doi.org/10.1146/annurev-genom-091212-153527
|
24 |
A. M. Weiner, (1971). Natural read-through at the UGA termination signal of Q-beta coat protein cistron. Nat. New Biol., 234: 206–209
https://doi.org/10.1038/newbio234206a0
|
25 |
H. Pelham, (1978). Leaky UAG termination codon in tobacco mosaic virus RNA. Nature, 272: 469–471
https://doi.org/10.1038/272469a0
|
26 |
C. M., Brown, S. P. Dinesh-Kumar, W. Miller, (1996). Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J. Virol., 70: 5884–5892
https://doi.org/10.1128/jvi.70.9.5884-5892.1996
|
27 |
O., Namy, G. Duchateau-Nguyen, J. Rousset, (2002). Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol. Microbiol., 43: 641–652
https://doi.org/10.1046/j.1365-2958.2002.02770.x
|
28 |
H. S., Chittum, W. S., Lane, B. A., Carlson, P. P., Roller, F. D., Lung, B. J. Lee, D. Hatfield, (1998). Rabbit beta-globin is extended beyond its UGA stop codon by multiple suppressions and translational reading gaps. Biochemistry, 37: 10866–10870
https://doi.org/10.1021/bi981042r
|
29 |
B. R., Klagges, G., Heimbeck, T. A., Godenschwege, A., Hofbauer, G. O., Pflugfelder, R., Reifegerste, D., Reisch, M., Schaupp, S. Buchner, (1996). Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J. Neurosci., 16: 3154–3165
https://doi.org/10.1523/JNEUROSCI.16-10-03154.1996
|
30 |
M. F., Lin, I. Jungreis, (2011). PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics, 27: i275–i282
https://doi.org/10.1093/bioinformatics/btr209
|
31 |
I., Jungreis, C. S., Chan, R. M., Waterhouse, G., Fields, M. F. Lin, (2016). Evolutionary dynamics of abundant stop codon readthrough. Mol. Biol. Evol., 33: 3108–3132
https://doi.org/10.1093/molbev/msw189
|
32 |
J. G., Dunn, C. K., Foo, N. G., Belletier, E. R. Gavis, J. Weissman, (2013). Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife, 2: e01179
https://doi.org/10.7554/eLife.01179
|
33 |
F., Schueren, T., Lingner, R., George, J., Hofhuis, C., Dickel, J. rtner, (2014). Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. eLife, 3: e03640
https://doi.org/10.7554/eLife.03640
|
34 |
N. T., Ingolia, S., Ghaemmaghami, J. R. S. Newman, J. Weissman, (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324: 218–223
https://doi.org/10.1126/science.1168978
|
35 |
A. C., Stiebler, J., Freitag, K. O., Schink, T., Stehlik, B. A., Tillmann, J. Ast, (2014). Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals. PLoS Genet., 10: e1004685
https://doi.org/10.1371/journal.pgen.1004685
|
36 |
L. S., Gramates, S. J., Marygold, G. D., Santos, J. M., Urbano, G., Antonazzo, B. B., Matthews, A. J., Rey, C. J., Tabone, M. A., Crosby, D. B. Emmert, et al.. (2017). FlyBase at 25: looking to the future. Nucleic Acids Res., 45: D663–D671
https://doi.org/10.1093/nar/gkw1016
|
37 |
A., Singh, L. E., Manjunath, P., Kundu, S., Sahoo, A., Das, H. R., Suma, P. L. Fox, S. Eswarappa, (2019). Let-7a-regulated translational readthrough of mammalian AGO1 generates a microRNA pathway inhibitor. EMBO J., 38: e100727
https://doi.org/10.15252/embj.2018100727
|
38 |
L. Diambra, (2017). Differential bicodon usage in lowly and highly abundant proteins. PeerJ, 5: e3081
https://doi.org/10.7717/peerj.3081
|
39 |
A. Dana, (2012). Determinants of translation elongation speed and ribosomal profiling biases in mouse embryonic stem cells. PLOS Comput. Biol., 8: e1002755
https://doi.org/10.1371/journal.pcbi.1002755
|
40 |
C., McCarthy, A. Carrea, (2017). Bicodon bias can determine the role of synonymous SNPs in human diseases. BMC Genomics, 18: 227
https://doi.org/10.1186/s12864-017-3609-6
|
41 |
A. K., Sharma, P., Sormanni, N., Ahmed, P., Ciryam, U. A., Friedrich, G. Kramer, E. Brien, (2019). A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data. PLOS Comput. Biol., 15: e1007070
https://doi.org/10.1371/journal.pcbi.1007070
|
42 |
T., Tuller, A., Carmi, K., Vestsigian, S., Navon, Y., Dorfan, J., Zaborske, T., Pan, O., Dahan, I. Furman, (2010). An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell, 141: 344–354
https://doi.org/10.1016/j.cell.2010.03.031
|
43 |
A. E., Firth, N. M., Wills, R. F. Gesteland, J. Atkins, (2011). Stimulation of stop codon readthrough: frequent presence of an extended 3' RNA structural element. Nucleic Acids Research, 39: 6679–6691
https://doi.org/10.1093/nar/gkr224
|
44 |
S., Blanchet, D., Cornu, M. Argentini, (2014). New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res., 42: 10061–10072
https://doi.org/10.1093/nar/gku663
|
45 |
M. Martin, (2011). Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet. J., 17: 10
https://doi.org/10.14806/ej.17.1.200
|
46 |
B. Langmead, S. Salzberg, (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9: 357–359
https://doi.org/10.1038/nmeth.1923
|
47 |
C., Trapnell, L. Pachter, S. Salzberg, (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25: 1105–1111
https://doi.org/10.1093/bioinformatics/btp120
|
48 |
H., Li, B., Handsaker, A., Wysoker, T., Fennell, J., Ruan, N., Homer, G., Marth, G. Abecasis, R. Durbin, (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25: 2078–2079
https://doi.org/10.1093/bioinformatics/btp352
|
49 |
D. J. MacKayD. Mac Kay. (2003) Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge University Press
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|