Please wait a minute...
Soil Ecology Letters

ISSN 2662-2289

ISSN 2662-2297(Online)

Soil Ecology Letters  2022, Vol. 4 Issue (1): 32-44   https://doi.org/10.1007/s42832-020-0060-4
  本期目录
Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi
Anika Lehmann1,2(), Eva F. Leifheit1,2, Linshan Feng1, Joana Bergmann1,2,3, Anja Wulf1, Matthias C. Rillig1,2
1. Freie Universität Berlin, Institut für Biologie, 14195 Berlin, Germany
2. Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195 Berlin, Germany
3. Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
 全文: PDF(1686 KB)   HTML
Abstract

• Polyester fibers increased aboveground biomass.

• Under drought conditions the AM-fungal-only treatment had the highest biomass.

• Colonization with AM fungi increased under microfiber addition.

• The mean weight diameter of soil aggregates decreased under microplastic contamination and drought stress, respectively.

• Under drought conditions AM fungi increased litter decomposition

Microplastics are increasingly recognized as a factor of global change. By altering soil inherent properties and processes, ripple-on effects on plants and their symbionts can be expected. Additionally, interactions with other factors of global change, such as drought, can influence the effect of microplastics. We designed a greenhouse study to examine effects of polyester microfibers, arbuscular mycorrhizal (AM) fungi and drought on plant, microbial and soil responses. We found that polyester microfibers increased the aboveground biomass of Allium cepa under well-watered and drought conditions, but under drought conditions the AM fungal-only treatment reached the highest biomass. Colonization with AM fungi increased under microfiber contamination, however, plant biomass did not increase when both AM fungi and fibers were present. The mean weight diameter of soil aggregates increased with AM fungal inoculation overall but decreased when the system was contaminated with microfibers or drought stressed. Our study adds additional support to the mounting evidence that microplastic fibers in soil can affect the plant–soil system by promoting plant growth, and favoring key root symbionts, AM fungi. Although soil aggregation is usually positively influenced by plant roots and AM fungi, and microplastic promotes both, our results show that plastic still had a negative effect on soil aggregates. Even though there are concerns that microplastic might interact with other factors of global change, our study revealed no such effect for drought.

Key wordsArbuscular mycorrhizal fungi    Microplastic    Soil aggregation    Organic matter decomposition    Drought    Root traits
收稿日期: 2020-06-08      出版日期: 2022-02-14
Corresponding Author(s): Anika Lehmann   
 引用本文:   
. [J]. Soil Ecology Letters, 2022, 4(1): 32-44.
Anika Lehmann, Eva F. Leifheit, Linshan Feng, Joana Bergmann, Anja Wulf, Matthias C. Rillig. Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi. Soil Ecology Letters, 2022, 4(1): 32-44.
 链接本文:  
https://academic.hep.com.cn/sel/CN/10.1007/s42832-020-0060-4
https://academic.hep.com.cn/sel/CN/Y2022/V4/I1/32
Fig.1  
Treatments df AGB BGB SRL SRSA RAD RTD
F p F p F p F p F p F p
AMF 1, 72 12.9112 0.0006 2.153 0.1466 1.8041 0.1834 1.7507 0.19 1.253 0.2668 0.005 0.9433
MP 1, 72 4.2479 0.0429 1.0704 0.3043 3.2223 0.0768 1.5859 0.212 10.279 0.002 0.401 0.5285
D 1, 72 26.767 <0.0001 0.4314 0.5134 16.1075 0.0001 16.2159 0.0001 10.455 0.0018 27.772 <0.0001
AMF: MP 1, 72 6.8948 0.0106 4.1144 0.0462 0.7845 0.3787 2.5199 0.1168 0.763 0.3854 6.466 0.0131
AMF:D 1, 72 3.3157 0.0728 2.3733 0.1278 0.7597 0.3863 1.7323 0.1923 0.249 0.6191 2.85 0.0957
MP:D 1, 72 3.0502 0.085 0.597 0.4422 1.1584 0.2854 0.8906 0.3485 0.21 0.6483 0.038 0.8455
AMF:MP:D 1, 72 0.5094 0.4777 0.3322 0.5661 0.0028 0.9582 0.0218 0.8831 0.793 0.3763 0.046 0.83
Tab.1  
Fig.2  
Fig.3  
Treatments PRC OML MWD
df F p df F p df F p
AMF 1, 70 10.78 0.0016 1, 72 7.527 0.0077
MP 1, 36 2.93962 0.095 1, 70 1.282 0.2613 1, 72 5.275 0.0245
D 1, 36 1.6576 0.2061 1, 70 0.745 0.391 1, 72 14.017 0.0004
AMF:MP 1, 70 0.269 0.6058 1, 72 0.286 0.5943
AMF:D 1, 70 0.431 0.5138 1, 72 0.6 0.441
MP:D 1, 36 0.66364 0.4206 1, 70 0.208 0.65 1, 72 0.001 0.9821
AMF:MP:D 1, 70 0.009 0.9233 1, 72 1.565 0.215
Tab.2  
Fig.4  
1 R.M. Auge, , H.D. Toler, , A.M. Saxton, , 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25, 13–24.
https://doi.org/10.1007/s00572-014-0585-4
2 M. Bergmann, , S. Mützel, , S. Primpke, , M.B. Tekman, , J. Trachsel, , G. Gerdts, , 2019. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances 5, eaax1157.
https://doi.org/10.1126/sciadv.aax1157
3 B. Boots, , C.W. Russell, , D.S. Green, , 2019. Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology 53, 11496–11506.
https://doi.org/10.1021/acs.est.9b03304
4 M.N. Cabello, , 1997. Hydrocarbon pollution: Its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiology Ecology 22, 233–236.
https://doi.org/10.1111/j.1574-6941.1997.tb00375.x
5 L. Cheng, , F.L. Booker, , C. Tu, , K.O. Burkey, , L. Zhou, , H.D. Shew, , T.W. Rufty, , S. Hu, , 2012. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337, 1084–1087.
https://doi.org/10.1126/science.1224304
6 M. Cole, , P. Lindeque, , C. Halsband, , T.S. Galloway, , 2011. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin 62, 2588–2597.
https://doi.org/10.1016/j.marpolbul.2011.09.025
7 F.T. de Vries, , C. Brown, , C.J. Stevens, , 2016. Grassland species root response to drought: consequences for soil carbon and nitrogen availability. Plant and Soil 409, 297–312.
https://doi.org/10.1007/s11104-016-2964-4
8 D. Eerkes-Medrano, , R.C. Thompson, , D.C. Aldridge, , 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75, 63–82.
https://doi.org/10.1016/j.watres.2015.02.012
9 M. Ezechias, , S. Covino, , T. Cajthaml, , 2014. Ecotoxicity and biodegradability of new brominated flame retardants: A review. Ecotoxicology and Environmental Safety 110, 153–167.
https://doi.org/10.1016/j.ecoenv.2014.08.030
10 A. Eziz, , Z. Yan, , D. Tian, , W. Han, , Z. Tang, , J. Fang, , 2017. Drought effect on plant biomass allocation: A meta-analysis. Ecology and Evolution 7, 11002–11010.
https://doi.org/10.1002/ece3.3630
11 Y. Fei, , S. Huang, , H. Zhang, , Y. Tong, , D. Wen, , X. Xia, , H. Wang, , Y. Luo, , D. Barceló, , 2020. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Science of the Total Environment 707, 135634.
https://doi.org/10.1016/j.scitotenv.2019.135634
12 F. Fort, , P. Cruz, , O. Catrice, , A. Delbrut, , M. Luzarreta, , C. Stroia, , C. Jouany, , 2015. Root functional trait syndromes and plasticity drive the ability of grassland Fabaceae to tolerate water and phosphorus shortage. Environmental and Experimental Botany 110, 62–72.
https://doi.org/10.1016/j.envexpbot.2014.09.007
13 K.J. Groh, , T. Backhaus, , B. Carney-Almroth, , B. Geueke, , P.A. Inostroza, , A. Lennquist, , H.A. Leslie, , M. Maffini, , D. Slunge, , L. Trasande, , A.M. Warhurst, , J. Muncke, , 2019. Overview of known plastic packaging-associated chemicals and their hazards. Science of the Total Environment 651, 3253–3268.
https://doi.org/10.1016/j.scitotenv.2018.10.015
14 I. Hakansson, , J. Lipiec, , 2000. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil & Tillage Research 53, 71–85.
https://doi.org/10.1016/S0167-1987(99)00095-1
15 P.D. Hallett, , D.S. Feeney, , A.G. Bengough, , M.C. Rillig, , C.M. Scrimgeour, , I.M. Young, , 2009. Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant and Soil 314, 183–196.
https://doi.org/10.1007/s11104-008-9717-y
16 N.B. Hartmann, , T. Hüffer, , R.C. Thompson, , M. Hassellöv, , A. Verschoor, , A.E. Daugaard, , S. Rist, , T. Karlsson, , N. Brennholt, , M. Cole, , M.P. Herrling, , M.C. Hess, , N.P. Ivleva, , A.L. Lusher, , M. Wagner, , 2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology 53, 1039–1047.
https://doi.org/10.1021/acs.est.8b05297
17 J. Ho, , T. Tumkaya, , S. Aryal, , H. Choi, , A. Claridge-Chang, , 2019. Moving beyond P values: data analysis with estimation graphics. Nature Methods 16, 565–566.
https://doi.org/10.1038/s41592-019-0470-3
18 J.D. Hoeksema, , V.B. Chaudhary, , C.A. Gehring, , N.C. Johnson, , J. Karst, , R.T. Koide, , A. Pringle, , C. Zabinski, , J.D. Bever, , J.C. Moore, , G.W.T. Wilson, , J.N. Klironomos, , J. Umbanhowar, , 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters 13, 394–407.
https://doi.org/10.1111/j.1461-0248.2009.01430.x
19 B. Jayne, , M. Quigley, , 2014. Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24, 109–119.
https://doi.org/10.1007/s00572-013-0515-x
20 W.D. Kemper, , R.C. Rosenau, , 1986. Aggregate Stability and Size Distribution, In: Lute, A., ed., Methods of Soil Analysis. Part I- Physical and Mineralogical Methods, 2 ed. SSSA, Madison, USA, pp. 425–443.
21 J.A. Keuskamp, , B.J.J. Dingemans, , T. Lehtinen, , J.M. Sarneel, , M.M. Hefting, , 2013. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution 4, 1070–1075.
https://doi.org/10.1111/2041-210X.12097
22 J.E. Larson, , J.L. Funk, , 2016. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. New Phytologist 210, 827–838.
https://doi.org/10.1111/nph.13829
23 A. Lehmann, , K. Fitschen, , M.C. Rillig, , 2019. Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. Soil Systems 3.
24 A. Lehmann, , E. Leifheit, , M. Rillig, , 2017a. Mycorrhizas and Soil Aggregation, In: Johnson, N., Gehring, C., Jansa, J., eds., Mycorrhizal Mediation of Soil. Elsevier, pp. 241–262.
25 A. Lehmann, , E.F. Leifheit, , M. Gerdawischke, , M.C. Rillig, , 2020. Microplastics have shape- and polymer-dependent effects on soil processes. bioRxiv, 2020.2006.2002.130054.
26 A. Lehmann, , W. Zheng, , M.C. Rillig, , 2017b. Soil biota contributions to soil aggregation. Nature Ecology & Evolution 1, 1828–1835.
https://doi.org/10.1038/s41559-017-0344-y
27 Y. Liang, , A. Lehmann, , M.B. Ballhausen, , L. Muller, , M.C. Rillig, , 2019. Increasing temperature and microplastic fibers jointly influence soil aggregation by saprobic fungi. Frontiers in Microbiology 10, 2018–2018.
https://doi.org/10.3389/fmicb.2019.02018
28 H. Liu, , X. Yang, , G. Liu, , C. Liang, , S. Xue, , H. Chen, , C.J. Ritsema, , V. Geissen, , 2017. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 185, 907–917.
https://doi.org/10.1016/j.chemosphere.2017.07.064
29 A.A.D. Machado, , W. Kloas, , C. Zarfl, , S. Hempel, , M.C. Rillig, , 2018a. Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology 24, 1405–1416.
https://doi.org/10.1111/gcb.14020
30 A.A.D. Machado, , C.W. Lau, , W. Kloas, , J. Bergmann, , J.B. Bachelier, , E. Faltin, , R. Becker, , A.S. Görlich, , M.C. Rillig, , 2019. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology 53, 6044–6052.
https://doi.org/10.1021/acs.est.9b01339
31 A.A.D. Machado, , C.W. Lau, , J. Till, , W. Kloas, , A. Lehmann, , R. Becker, , M.C. Rillig, , 2018b. Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology 52, 9656–9665.
https://doi.org/10.1021/acs.est.8b02212
32 K. Marvel, , B.I. Cook, , C.J.W. Bonfils, , P.J. Durack, , J.E. Smerdon, , A.P. Williams, , 2019. Twentieth-century hydroclimate changes consistent with human influence. Nature 569, 59–65.
https://doi.org/10.1038/s41586-019-1149-8
33 S. Materechera, , A. Alston, , J. Kirby, , A. Dexter, , 1992. Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant and Soil 144, 297–303.
https://doi.org/10.1007/BF00012888
34 M.L. McCormack, , T.S. Adams, , E.A.H. Smithwick, , D.M. Eissenstat, , 2012. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist 195, 823–831.
https://doi.org/10.1111/j.1469-8137.2012.04198.x
35 M.L. McCormack, , I.A. Dickie, , D.M. Eissenstat, , T.J. Fahey, , C.W. Fernandez, , D. Guo, , H.S. Helmisaari, , E.A. Hobbie, , C.M. Iversen, , R.B. Jackson, , J. Leppälammi-Kujansuu, , R.J. Norby, , R.P. Phillips, , K.S. Pregitzer, , S.G. Pritchard, , B. Rewald, , M. Zadworny, , 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist 207, 505–518.
https://doi.org/10.1111/nph.13363
36 T.P. McGonigle, , M.H. Miller, , D.G. Evans, , G.L. Fairchild, , J.A. Swan, , 1990. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytologist 115, 495–501.
https://doi.org/10.1111/j.1469-8137.1990.tb00476.x
37 S.M. Mintenig, , M.G.J. Löder, , S. Primpke, , G. Gerdts, , 2019. Low numbers of microplastics detected in drinking water from ground water sources. Science of the Total Environment 648, 631–635.
https://doi.org/10.1016/j.scitotenv.2018.08.178
38 E.L. Ng, , E. Huerta Lwanga, , S.M. Eldridge, , P. Johnston, , H.W. Hu, , V. Geissen, , D. Chen, , 2018. An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment 627, 1377–1388.
https://doi.org/10.1016/j.scitotenv.2018.01.341
39 W. Niu, , Q. Guo, , X. Zhou, , M.J. Helmers, , 2012. Effect of aeration and soil water redistribution on the air permeability under subsurface drip irrigation. Soil Science Society of America Journal 76, 815–820.
https://doi.org/10.2136/sssaj2011.0329
40 L. Nizzetto, , M. Futter, , S. Langaas, , 2016. Are agricultural soils dumps for microplastics of urban origin? Environmental Science & Technology 50, 10777–10779.
https://doi.org/10.1021/acs.est.6b04140
41 J. Pinheiro, , D. Bates, , S. DebRoy, , D. Sarkar, , R.C. Team, , 2018. nlme: Linear and nonlinear mixed effects models, R package version 3.1–137 ed.
42 Y. Qi, , X. Yang, , A.M. Pelaez, , E. Huerta Lwanga, , N. Beriot, , H. Gertsen, , P. Garbeva, , V. Geissen, , 2018. Macro- and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment 645, 1048–1056.
https://doi.org/10.1016/j.scitotenv.2018.07.229
43 R Development Core Team, 2014. R: A language and environment for statistical computing, version 3.4.1 ed.
44 M.C. Rillig, , 2012. Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology 46, 6453–6454.
https://doi.org/10.1021/es302011r
45 M.C. Rillig, , 2018. Microplastic disguising as soil carbon storage. Environmental Science & Technology 52, 6079–6080.
https://doi.org/10.1021/acs.est.8b02338
46 M.C. Rillig, , C.B. Field, , M.F. Allen, , 1999. Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119, 572–577.
https://doi.org/10.1007/s004420050821
47 M.C. Rillig, , A. Lehmann, , 2020. Microplastic in terrestrial ecosystems. Science 368, 1430–1431.
https://doi.org/10.1126/science.abb5979
48 M.C. Rillig, , A. Lehmann, , A.A. de Souza Machado, , G. Yang, , 2019a. Microplastic effects on plants. New Phytologist 223, 1066–1070.
https://doi.org/10.1111/nph.15794
49 M.C. Rillig, , A. Lehmann, , M. Ryo, , J. Bergmann, , 2019b. Shaping up: Toward considering the shape and form of pollutants. Environmental Science & Technology 53, 7925–7926.
https://doi.org/10.1021/acs.est.9b03520
50 M.C. Rillig, , N.F. Mardatin, , E.F. Leifheit, , P.M. Antunes, , 2010. Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biology & Biochemistry 42, 1189–1191.
https://doi.org/10.1016/j.soilbio.2010.03.027
51 M.C. Rillig, , M. Ryo, , A. Lehmann, , C.A. Aguilar-Trigueros, , S. Buchert, , A. Wulf, , A. Iwasaki, , J. Roy, , G. Yang, , 2019c. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890.
https://doi.org/10.1126/science.aay2832
52 L. Rose, , 2017. Pitfalls in root trait calculations: How ignoring diameter heterogeneity can lead to overestimation of functional traits. Frontiers in Plant Science 8, 8.
https://doi.org/10.3389/fpls.2017.00898
53 A. Schussler, , C. Walker, , 2010. The Glomeromycot–A species list with new families and new genera. The Royal Botanic Garden Kew.
54 A. Sendek, , C. Karakoç, , C. Wagg, , J. Domínguez-Begines, , G.M. do Couto, , M.G.A. van der Heijden, , A.A. Naz, , A. Lochner, , A. Chatzinotas, , S. Klotz, , L. Gómez-Aparicio, , N. Eisenhauer, , 2019. Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Scientific Reports 9, 9650.
https://doi.org/10.1038/s41598-019-45702-1
55 S.E. Smith, , E. Facelli, , S. Pope, , F. Andrew Smith, , 2010. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil 326, 3–20.
https://doi.org/10.1007/s11104-009-9981-5
56 R.C. Thompson, , S.H. Swan, , C.J. Moore, , F.S. vom Saal, , 2009. Our plastic age. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 364, 1973–1976.
https://doi.org/10.1098/rstb.2009.0054
57 P. van den Berg, , E. Huerta-Lwanga, , F. Corradini, , V. Geissen, , 2020. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution 261, 114198.
https://doi.org/10.1016/j.envpol.2020.114198
58 M. van Kleunen, , A. Brumer, , L. Gutbrod, , Z. Zhang, , 2020. A microplastic used as infill material in artificial sport turfs reduces plant growth. Plants. People & the Planet 2, 157–166.
https://doi.org/10.1002/ppp3.10071
59 M. Wagner, , C. Scherer, , D. Alvarez-Muñoz, , N. Brennholt, , X. Bourrain, , S. Buchinger, , E. Fries, , C. Grosbois, , J. Klasmeier, , T. Marti, , S. Rodriguez-Mozaz, , R. Urbatzka, , A.D. Vethaak, , M. Winther-Nielsen, , G. Reifferscheid, , 2014. Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe 26, 12.
https://doi.org/10.1186/s12302-014-0012-7
60 J. Wang, , X. Liu, , Y. Li, , T. Powell, , X. Wang, , G. Wang, , P. Zhang, , 2019. Microplastics as contaminants in the soil environment: A mini-review. Science of the Total Environment 691, 848–857.
https://doi.org/10.1016/j.scitotenv.2019.07.209
61 H. Wickham, , 2009. ggplot2: Elegant graphics for data analysis. Springer, New York.
62 G.S. Zhang, , F.X. Zhang, , 2020. Variations in aggregate-associated organic carbon and polyester microfibers resulting from polyester microfibers addition in a clayey soil. Environmental Pollution 258, 113716.
https://doi.org/10.1016/j.envpol.2019.113716
63 G.S. Zhang, , F.X. Zhang, , X.T. Li, , 2019. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Science of the Total Environment 670, 1–7.
https://doi.org/10.1016/j.scitotenv.2019.03.149
[1] SEL-00060-OF-AL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed