Please wait a minute...
Soil Ecology Letters

ISSN 2662-2289

ISSN 2662-2297(Online)

Soil Ecology Letters  2022, Vol. 4 Issue (4): 454-469   https://doi.org/10.1007/s42832-021-0113-3
  本期目录
Plant diversity is coupled with soil fungal diversity in a natural temperate steppe of northeastern China
Dan Liu1, Guohua Liu2,3(), Li Chen4, Wangya Han5, Dongbo Wang6
1. Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Torch High Technology Industry Development Center, Ministry of Science & Technology, Beijing 100049, China
5. Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
6. Monitoring Station for Eco-environment of Hulunbeir, Hulunbeir 021000, China
 全文: PDF(2739 KB)   HTML
Abstract

• Soil fungal community composition varied significantly between study sites.

• Plant species richness (PSR) contributed most to the variation in soil fungi community.

• Both α and β diversity of soil fungi coupled well with that of plant.

• Plant diversity can predict soil fungal diversity in the temperate steppe of northeastern China.

Soil fungi and aboveground plant play vital functions in terrestrial ecosystems, while the relationship between aboveground plant diversity and the unseen soil fungal diversity remains unclear. We established 6 sites from the west to the east of the temperate steppe that vary in plant diversity (plant species richness: 7-32) to explore the relationship between soil fungal diversity and aboveground plant diversity. Soil fungal community was characterized by applying 18S rRNA gene sequencing using MiSeq PE300 and aligned with Silva 132 database. As a result, soil fungal community was predominately composed of species within the Ascomycota (84.36%), Basidiomycota (7.22%) and Mucoromycota (6.44%). Plant species richness occupied the largest explanatory power in structuring soil fungal community (19.05%–19.78%). The alpha (α) diversity of the whole soil fungi and Ascomycota showed a hump-backed pattern with increasing plant species richness, and the beta (β) diversity of the whole soil fungi and Ascomycota increased with increasing plant β diversity. Those results indicated that soil fungi and external resources were well balanced at the 20-species level of plant and the sites were more distinct in the composition of their plant communities also harbored more distinct soil fungal communities. Thus, plant diversity could predict both soil fungal α and β diversity in the temperate steppe of northeastern China.

Key wordsTemperate steppe    Sequencing    Plant diversity    Soil fungal diversity
收稿日期: 2020-04-25      出版日期: 2022-10-25
Corresponding Author(s): Guohua Liu   
 引用本文:   
. [J]. Soil Ecology Letters, 2022, 4(4): 454-469.
Dan Liu, Guohua Liu, Li Chen, Wangya Han, Dongbo Wang. Plant diversity is coupled with soil fungal diversity in a natural temperate steppe of northeastern China. Soil Ecology Letters, 2022, 4(4): 454-469.
 链接本文:  
https://academic.hep.com.cn/sel/CN/10.1007/s42832-021-0113-3
https://academic.hep.com.cn/sel/CN/Y2022/V4/I4/454
Fig.1  
Environmental
variables
A B C D E F
MAT (°C) 2.09 1.54 1.78 1.47 1.19 1.08
MAP (mm) 138.32 158.86 197.13 195.72 189.55 188.00
Soil type kastanozem kastanozem kastanozem chernozem chernozem chernozem
Moisture (%) 6.32±0.28b 1.91±0.20a 4.54±0.95ab 5.16±0.38ab 19.08±2.22c 18.51±4.00c
Soil pH 7.04±0.02b 6.99±0.25b 7.02±0.14b 6.87±0.01ab 6.70±0.07a 7.30±0.12c
TN (mg ? g−1) 1.78±0.07b 1.06±0.13a 1.85±0.16b 1.88±0.02b 2.88±0.05d 2.40±0.07c
TC (mg ? g−1) 18.80±0.49b 9.66±1.54a 18.69±1.84b 21.52±0.04c 34.64±0.88e 32.38±1.56d
C/N 10.55±0.14b 9.07±0.54a 10.12±0.12b 11.42±0.12c 12.01±0.21d 13.48±0.35e
Silt (%) 4.60±2.23b 2.89±0.21ab 2.82±0.35ab 4.23±0.20ab 2.59±0.07a 2.75±0.31a
Sand (%) 95.33±2.35a 97.11±0.21ab 97.18±0.35ab 95.77±0.20ab 97.41±0.07b 97.25±0.31b
Dominant plant Cleistogenes squarrosa
Carex korshinskii
Stipa krylovii
C. squarrosa
Stipa grandis
Agropyron cristatum
C. squarrosa
C. korshinskii
S. grandis
C. squarrosa
C. korshinskii
Artemisia scoparia
Serratula centauroides
Carex pediformis
Pulsatilla turczaninovii
C. pediformis
Thalictrum petaloideum
Potentilla verticillaris
PSR (number of plant species) 8±1a 9±1a 9±2a 19±3b 24±1c 31±2d
PSA (count of plant individual) 1151±264bc 381±165a 602±147ab 1312±64c 1300±315c 1483±393c
PC (%) 56.67±11.55b 23.33±2.89a 53.33±5.77b 78.33±10.41c 71.67±5.77c 80.00±10.00c
AGB (g) 409.47±35.38a 455.33±65.41ab 717.87±104.26bc 537.07±56.78ab 887.47±140.76c 1303.73±286.91d
BGB (g) 1289.61±731.43abc 560.93±233.45a 812.56±565.37ab 1420.67±300.19bcd 1729.97±175.13cd 2191.29±380.17d
LB (g) 224.00±103.66a 253.87±120.34a 288.67±29.61a 176.67±94.43a 232.13±103.38a 307.20±217.75a
Tab.1  
Fig.2  
Fig.3  
Phylum Index A B C D E F
Ascomycota Faith's PD 1.07±0.12ab 1.16±0.14abc 1.04±0.08a 1.36±0.10c 1.31±0.06bc 1.20±0.09abc
Species richness 48.67±6.43a 55.33±6.66ab 48.33±2.89a 64.00±4.00b 58.33±2.08ab 56.00±5.00ab
Basidiomycota Faith's PD 0.54±0.13ab 0.62±0.06ab 0.50±0.06a 0.81±0.04b 0.68±0.12ab 0.49±0.15a
Species richness 17.00±2.65a 22.00±2.00ab 19.67±2.52ab 27.00±1.73b 22.67±3.21ab 20.33±4.16ab
Mucoromycota Faith's PD 0.16±0.12a 0.25±0.12a 0.23±0.10a 0.30±0.13a 0.31±0.03a 0.33±0.04a
Species richness 3.33±1.53a 5.00±0.00a 4.00±1.00a 6.67±1.53a 4.67±0.58a 6.33±2.52a
Tab.2  
PERMANOVA PERMDISP
unweighted UniFrac distance Bray–Curtis distance unweighted UniFrac distance Bray–Curtis distance
Pseudo-F P Pseudo-F P Pseudo-F P Pseudo-F P
The whole fungi 2.39 0.00** 2.55 0.00** 1.29 0.33 0.27 0.92
Ascomycota 1.96 0.00** 2.73 0.00** 0.29 0.91 0.18 0.97
Basidiomycota 3.12 0.00** 2.37 0.00** 0.44 0.81 0.45 0.81
Mucoromycota 3.75 0.14* 1.62 0.02* 0.73 0.61 0.42 0.83
Tab.3  
Fig.4  
Fig.5  
Control for Anweighted UniFrac distance Bray-Curtis distance
Mantel test
The whole fungi 0.55** 0.35**
Ascomycota 0.36** 0.27**
Basidiomycota 0.37** 0.41**
Mucoromycota 0.23* 0.24*
Partial Mantel test
The whole fungi Soil 0.47** 0.20*
Climate 0.47** 0.33**
Ascomycota Soil 0.12 0.22*
Climate 0.25** 0.24**
Basidiomycota Soil 0.22* 0.35**
Climate 0.30** 0.37**
Mucoromycota Soil 0.18* −0.16
Climate 0.09 0.27*
Tab.4  
Fig.6  
1 M.J. Anderson, , K.E. Ellingsen, , B.H. Mcardle, , 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9, 683–693.
https://doi.org/10.1111/j.1461-0248.2006.00926.x
2 S. Andersson, , S.I. Nilsson, , 2001. Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biology & Biochemistry 33, 1181–1191.
https://doi.org/10.1016/S0038-0717(01)00022-0
3 M. Bahram, , S. Polme, , U. Koljalg, , S. Zarre, , L. Tedersoo, , 2012. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytologist 193, 465–473.
https://doi.org/10.1111/j.1469-8137.2011.03927.x
4 T.M. Bezemer, , C.S. Lawson, , K. Hedlund, , A.R. Edwards, , A.J. Brook, , J.M. Igual, , S.R. Mortimer, , W.H. Van der Putten, , 2006. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands. Journal of Ecology 94, 893–904.
https://doi.org/10.1111/j.1365-2745.2006.01158.x
5 F.G. Blanchet, , P. Legendre, , D. Borcard, , 2008. Forward selection of explanatory variables. Ecology 89, 2623–2632.
https://doi.org/10.1890/07-0986.1
6 J. Borneman, , R.J. Hartin, , 2000. PCR primers that amplify fungal rRNA genes from environmental samples. Applied and Environmental Microbiology 66, 4356–4360.
https://doi.org/10.1128/AEM.66.10.4356-4360.2000
7 C.D. Broeckling, , A.K. Broz, , J. Bergelson, , D.K. Manter, , J.M. Vivanco, , 2008. Root exudates regulate soil fungal community composition and diversty. Applied and Environmental Microbiology 74, 738–744.
https://doi.org/10.1128/AEM.02188-07
8 J.G. Caporaso, , J. Kuczynski, , J. Stombaugh, , K. Bittinger, , F.D. Bushman, , E.K. Costello, , N. Fierer, , A.G. Pena, , J.K. Goodrich, , J.I. Gordon, , G.A. Huttley, , S.T. Kelley, , D. Knights, , J.E. Koenig, , R.E. Ley, , C.A. Lozupone, , D. McDonald, , B.D. Muegge, , M. Pirrung, , J. Reeder, , J.R. Sevinsky, , P.J. Tumbaugh, , W.A. Walters, , J. Widmann, , T. Yatsunenko, , J. Zaneveld, , R. Knight, , 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336.
https://doi.org/10.1038/nmeth.f.303
9 J.E. Carrara, , C.A. Walter, , J.S. Hawkins, , W.T. Peterjohn, , C. Averill, , E.R. Brzostek, , 2018. Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Global Change Biology 24, 2721–2734.
https://doi.org/10.1111/gcb.14081
10 M.W. Chase, , J.L. Reveal, , 2009. A phylogenetic classification of the land plants to accompany APG III. Botanical Journal of the Linnean Society 161, 122–127.
https://doi.org/10.1111/j.1095-8339.2009.01002.x
11 W.Q. Chen, , R. Xu, , Y.T. Wu, , J. Chen, , Y.J. Zhang, , T.M. Hu, , X.P. Yuan, , L. Zhou, , T.Y. Tan, , J.R. Fan, , 2018. Plant diversity is coupled with beta not alpha diversity of soil fungal communities following N enrichment in a semi-arid grassland. Soil Biology & Biochemistry 116, 388–398.
https://doi.org/10.1016/j.soilbio.2017.10.039
12 Y.L. Chen, , T.L. Xu, , S.D. Veresoglou, , H.W. Hu, , Z.P. Hao, , Y.J. Hu, , L. Liu, , Y. Deng, , M.C. Rillig, , B.D. Chen, , 2017. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology & Biochemistry 110, 12–21.
https://doi.org/10.1016/j.soilbio.2017.02.015
13 N.J.A. Curlevski, , Z.H. Xu, , I.C. Anderson, , J.W.G. Cairney, , 2010. Soil fungal communities differ in native mixed forest and adjacent Araucaria cunninghamii plantations in subtropical Australia. Journal of Soils and Sediments 10, 1278–1288.
https://doi.org/10.1007/s11368-010-0239-x
14 M. Delgado-Baquerizo, , F.T. Maestre, , P.B. Reich, , T.C. Jeffries, , J.J. Gaitan, , D. Encinar, , M. Berdugo, , C.D. Campbell, , B.K. Singh, , 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications 7, 10541.
https://doi.org/10.1038/ncomms10541
15 R.C. Edgar, , 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998.
https://doi.org/10.1038/nmeth.2604
16 N. Eisenhauer, , H. Bessler, , C. Engels, , G. Gleixner, , M. Habekost, , A. Milcu, , S. Partsch, , A.C.W. Sabais, , C. Scherber, , S. Steinbeiss, , A. Weigelt, , W.W. Weisser, , S. Scheu, , 2010. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496.
https://doi.org/10.1890/08-2338.1
17 A.H. Eom, , D.C. Hartnett, , G.W.T. Wilson, , 2000. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122, 435–444.
https://doi.org/10.1007/s004420050050
18 S.D. Frey, , J. Lee, , J.M. Melillo, , J. Six, , 2013. The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change 3, 395–398.
https://doi.org/10.1038/nclimate1796
19 C. Gao, , Y. Zhang, , N.N. Shi, , Y. Zheng, , L. Chen, , T. Wubet, , H. Bruelheide, , S. Both, , F. Buscot, , Q. Ding, , A. Erfmeier, , P. Kuehn, , K. Nadrowski, , T. Scholten, , L.D. Guo, , 2015. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytologist 205, 771–785.
https://doi.org/10.1111/nph.13068
20 X. Guo, , J. Feng, , Z. Shi, , X. Zhou, , M. Yuan, , X. Tao, , L. Hale, , T. Yuan, , J. Wang, , Y. Qin, , A. Zhou, , Y. Fu, , L. Wu, , Z. He, , J.D. Van Nostrand, , D. Ning, , X. Liu, , Y. Luo, , J.M. Tiedje, , Y. Yang, , J. Zhou, , 2018. Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change 8, 813–818.
https://doi.org/10.1038/s41558-018-0254-2
21 C.V. Hawkes, , S.N. Kivlin, , J.D. Rocca, , V. Huguet, , M.A. Thomsen, , K.B. Suttle, , 2011. Fungal community responses to precipitation. Global Change Biology 17, 1637–1645.
https://doi.org/10.1111/j.1365-2486.2010.02327.x
22 J.Z. He, , Z.H. Xu, , J. Hughes, , 2005. Analyses of soil fungal communities in adjacent natural forest and hoop pine plantation ecosystems of subtropical Australia using molecular approaches based on 18S rRNA genes. FEMS Microbiology Letters 247, 91–100.
https://doi.org/10.1016/j.femsle.2005.04.033
23 A. Hodge, , C.D. Campbell, , A.H. Fitter, , 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413, 297–299.
https://doi.org/10.1038/35095041
24 D.U. Hooper, , D.E. Bignell, , V.K. Brown, , L. Brussaard, , J.M. Dangerfield, , D.H. Wall, , D.A. Wardle, , D.C. Coleman, , K.E. Giller, , P. Lavelle, , W.H. Van der Putten, , P.C. De Ruiter, , J. Rusek, , W.L. Silver, , J.M. Tiedje, , V. Wolters, , 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. Bioscience 50, 1049–1061.
https://doi.org/10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
25 M.Z. Hossain, , S. Sugiyama, , 2011. Influences of plant litter diversity on decomposition, nutrient mineralization and soil microbial community structure. Grassland Science 57, 72–80.
https://doi.org/10.1111/j.1744-697X.2011.00211.x
26 M. Kondoh, , 2001. Unifying the relationships of species richness to productivity and disturbance. Proceedings of the Royal Society of London 268, 269–271.
https://doi.org/10.1098/rspb.2000.1384
27 Y.P. Kou, , J.B. Li, , Y.S. Wang, , C.A. Li, , B. Tu, , M.J. Yao, , X.Z. Li, , 2017. Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils. Soil Biology & Biochemistry 111, 104–114.
https://doi.org/10.1016/j.soilbio.2017.04.005
28 Y. Kuzyakov, , X. Xu, , 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist 198, 656–669.
https://doi.org/10.1111/nph.12235
29 M. Lange, , M. Habekost, , N. Eisenhauer, , C. Roscher, , H. Bessler, , C. Engels, , Y. Oelmann, , S. Scheu, , W. Wilcke, , E.D. Schulze, , G. Gleixner, , 2014. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS One 9, e96182.
https://doi.org/10.1371/journal.pone.0096182
30 G.X. Li, , G.R. Xu, , C.C. Shen, , Y. Tang, , Y.X. Zhang, , K.M. Ma, , 2016. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline. Science China. Life Sciences 59, 1177–1186.
https://doi.org/10.1007/s11427-016-0072-6
31 H. Li, , J.H. Zhang, , H.F. Hu, , L.Y. Chen, , Y.K. Zhu, , H.H. Shen, , J.Y. Fang, , 2017. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China. European Journal of Soil Biology 79, 40–47.
https://doi.org/10.1016/j.ejsobi.2017.02.004
32 D. Liu, , G. Liu, , L. Chen, , J. Wang, , L. Zhang, , 2018. Soil pH determines fungal diversity along an elevation gradient in Southwestern China. Science China. Life Sciences 61, 718–726.
https://doi.org/10.1007/s11427-017-9200-1
33 Z.F. Liu, , G.H. Liu, , B.J. Fu, , X.X. Zheng, , 2008. Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Ecological Research 23, 511–518.
https://doi.org/10.1007/s11284-007-0405-9
34 L. Ma, , C. Guo, , X. Lu, , S. Yuan, , R. Wang, , 2015. Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China. Biogeosciences 12, 2585–2596.
https://doi.org/10.5194/bg-12-2585-2015
35 J. Moll, , K. Goldmann, , S. Kramer, , S. Hempel, , E. Kandeler, , S. Marhan, , L. Ruess, , D. Kruger, , F. Buscot, , 2015. Resource type and availability regulate fungal communities along arable soil profiles. Microbial Ecology 70, 390–399.
https://doi.org/10.1007/s00248-015-0569-8
36 R. Ochoa-Hueso, , S.L. Collins, , M. Delgado-Baquerizo, , K. Hamonts, , W.T. Pockman, , R.L. Sinsabaugh, , M.D. Smith, , A.K. Knapp, , S.A. Power, , 2018. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology 24, 2818–2827.
https://doi.org/10.1111/gcb.14113
37 J. Oksanen, , R. Kindt, , P. Legendre, , B. O'Hara, 2007. vegan: Community Ecology Package. R package version 2.0–6.
38 K.G. Peay, , C. Baraloto, , P.V.A. Fine, , 2013. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME Journal 7, 1852–1861.
https://doi.org/10.1038/ismej.2013.66
39 G.J. Pec, , J. Karst, , D.L. Taylor, , P.W. Cigan, , N. Erbilgin, , J.E.K. Cooke, , S.W. Simard, , J.F. Cahill, Jr, 2017. Change in soil fungal community structure driven by a decline in Ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. New Phytologist 213, 864–873.
https://doi.org/10.1111/nph.14195
40 L. Pellissier, , H. Niculita-Hirzel, , A. Dubuis, , M. Pagni, , N. Guex, , C. Ndiribe, , N. Salamin, , I. Xenarios, , J. Goudet, , I.R. Sanders, , A. Guisan, , 2014. Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps. Molecular Ecology 23, 4274–4290.
https://doi.org/10.1111/mec.12854
41 F. Pennekamp, , M. Pontarp, , A. Tabi, , F. Altermatt, , R. Alther, , Y. Choffat, , E.A. Fronhofer, , P. Ganesanandamoorthy, , A. Garnier, , J.I. Griffiths, , S. Greene, , K. Horgan, , T.M. Massie, , E. Machler, , G.M. Palamara, , M. Seymour, , O.L. Petchey, , 2018. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112.
https://doi.org/10.1038/s41586-018-0627-8
42 D.L. Porazinska, , E.C. Farrer, , M.J. Spasojevic, , C.P.B. de Mesquita, , S.A. Sartwell, , J.G. Smith, , C.T. White, , A.J. King, , K.N. Suding, , S.K. Schmidt, , 2018. Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology 99, 1942–1952.
https://doi.org/10.1002/ecy.2420
43 S.M. Prober, , J.W. Leff, , S.T. Bates, , E.T. Borer, , J. Firn, , W.S. Harpole, , E.M. Lind, , E.W. Seabloom, , P.B. Adler, , J.D. Bakker, , E.E. Cleland, , N.M. DeCrappeo, , E. DeLorenze, , N. Hagenah, , Y. Hautier, , K.S. Hofmockel, , K.P. Kirkman, , J.M.H. Knops, , K.J. La Pierre, , A.S. MacDougall, , R.L. McCulley, , C.E. Mitchell, , A.C. Risch, , M. Schuetz, , C.J. Stevens, , R.J. Williams, , N. Fierer, , 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters 18, 85–95.
https://doi.org/10.1111/ele.12381
44 C. Quast, , E. Pruesse, , P. Yilmaz, , J. Gerken, , T. Schweer, , P. Yarza, , J. Peplies, , F.O. Glockner, , 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, 590–596.
https://doi.org/10.1093/nar/gks1219
45 R Core Team, 2013. R: a language and environment for statistical computing (Vienna: R Foundatin for Statistical Computing).
46 B.H. Ren, , Y.M. Hu, , B.D. Chen, , Y. Zhang, , J. Thiele, , R.J. Shi, , M.A. Liu, , R.C. Bu, , 2018. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Scientific Reports 8, 5619.
https://doi.org/10.1038/s41598-018-24040-8
47 T. Rottstock, , J. Joshi, , V. Kummer, , M. Fischer, , 2014. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology 95, 1907–1917.
https://doi.org/10.1890/13-2317.1
48 J. Rousk, , E. Baath, , P.C. Brookes, , C.L. Lauber, , C. Lozupone, , J.G. Caporaso, , R. Knight, , N. Fierer, , 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal 4, 1340–1351.
https://doi.org/10.1038/ismej.2010.58
49 M. Scherer-Lorenzen, , 2008. Functional diversity affects decomposition processes in experimental grasslands. Functional Ecology 22, 547–555.
https://doi.org/10.1111/j.1365-2435.2008.01389.x
50 W. She, , Y. Bai, , Y. Zhang, , S. Qin, , W. Feng, , Y. Sun, , J. Zheng, , B. Wu, , 2018. Resource availability drives responses of soil microbial communities to short-term precipitation and nitrogen addition in a desert shrubland. Frontiers in Microbiology 9, 186.
https://doi.org/10.3389/fmicb.2018.00186
51 M.E. Smith, , G.W. Douhan, , D.M. Rizzo, , 2007. Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytologist 174, 847–863.
https://doi.org/10.1111/j.1469-8137.2007.02040.x
52 E.M. Spehn, , J. Joshi, , B. Schmid, , J. Alphei, , C. Korner, , 2000. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant and Soil 224, 217–230.
https://doi.org/10.1023/A:1004891807664
53 X. Tang, , Y. Zhou, , H. Li, , L. Yao, , Z. Ding, , M. Ma, , P. Yu, , 2020. Remotely monitoring ecosystem respiration from various grasslands along a large-scale east-west transect across northern China. Carbon Balance and Management 15, 6.
https://doi.org/10.1186/s13021-020-00141-8
54 L. Tedersoo, , M. Bahram, , T. Cajthaml, , S. Polme, , I. Hiiesalu, , S. Anslan, , H. Harend, , F. Buegger, , K. Pritsch, , J. Koricheva, , K. Abarenkov, , 2016. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME Journal 10, 346–362.
https://doi.org/10.1038/ismej.2015.116
55 L. Tedersoo, , M. Bahram, , S. Polme, , U. Koljalg, , N.S. Yorou, , R. Wijesundera, , L.V. Ruiz, , A.M. Vasco-Palacios, , P.Q. Thu, , A. Suija, , M.E. Smith, , C. Sharp, , E. Saluveer, , A. Saitta, , M. Rosas, , T. Riit, , D. Ratkowsky, , K. Pritsch, , K. Poldmaa, , M. Piepenbring, , C. Phosri, , M. Peterson, , K. Parts, , K. Partel, , E. Otsing, , E. Nouhra, , A.L. Njouonkou, , R.H. Nilsson, , L.N. Morgado, , J. Mayor, , T.W. May, , L. Majuakim, , D.J. Lodge, , S.S. Lee, , K.H. Larsson, , P. Kohout, , K. Hosaka, , I. Hiiesalu, , T.W. Henkel, , H. Harend, , L.D. Guo, , A. Greslebin, , G. Grelet, , J. Geml, , G. Gates, , W. Dunstan, , C. Dunk, , R. Drenkhan, , J. Dearnaley, , A. De Kesel, , T. Dang, , X. Chen, , F. Buegger, , F.Q. Brearley, , G. Bonito, , S. Anslan, , S. Abell, , K. Abarenkov, , 2014. Global diversity and geography of soil fungi. Science 346, 1078–1078.
https://doi.org/10.1126/science.1256688
56 L. Tedersoo, , M. Bahram, , M. Toots, , A.G. Diedhiou, , T.W. Henkel, , R. Kjoller, , M.H. Morris, , K. Nara, , E. Nouhra, , K.G. Peay, , S. Polme, , M. Ryberg, , M.E. Smith, , U. Koljalg, , 2012. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Molecular Ecology 21, 4160–4170.
https://doi.org/10.1111/j.1365-294X.2012.05602.x
57 Q.Y. Tian, , N.N. Liu, , W.M. Bai, , L.H. Li, , J.Q. Chen, , P.B. Reich, , Q. Yu, , D.L. Guo, , M.D. Smith, , A.K. Knapp, , W.X. Cheng, , P. Lu, , Y. Gao, , A. Yang, , T.Z. Wang, , X. Li, , Z.W. Wang, , Y.B. Ma, , X.G. Han, , W.H. Zhang, , 2016. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology 97, 65–74.
https://doi.org/10.1890/15-0917.1
58 B. Tu, , X. Domene, , M.J. Yao, , C.N. Li, , S.H. Zhang, , Y.P. Kou, , Y.S. Wang, , X.Z. Li, , 2017. Microbial diversity in Chinese temperate steppe: unveiling the most influential environmental drivers. FEMS Microbiology Ecology 93, 93.
https://doi.org/10.1093/femsec/fix031
59 M.P. Waldrop, , D.R. Zak, , C.B. Blackwood, , C.D. Curtis, , D. Tilman, , 2006. Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters 9, 1127–1135.
https://doi.org/10.1111/j.1461-0248.2006.00965.x
60 D.A. Wardle, , R.D. Bardgett, , J.N. Klironomos, , H. Setala, , W.H. van der Putten, , D.H. Wall, , 2004. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633.
https://doi.org/10.1126/science.1094875
61 C.O. Webb, , M.J. Donoghue, , 2005. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes 5, 181–183.
https://doi.org/10.1111/j.1471-8286.2004.00829.x
62 T. Yang, , J.M. Adams, , Y. Shi, , J.S. He, , X. Jing, , L.T. Chen, , L. Tedersoo, , H.Y. Chu, , 2017. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytologist 215, 756–765.
https://doi.org/10.1111/nph.14606
63 M.J. Yao, , J.P. Rui, , H.S. Niu, , P. Hedenec, , J.B. Li, , Z.L. He, , J.M. Wang, , W.D. Cao, , X.Z. Li, , 2017. The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe. Catena 152, 47–56.
https://doi.org/10.1016/j.catena.2017.01.007
64 D.R. Zak, , W.E. Holmes, , D.C. White, , A.D. Peacock, , D. Tilman, , 2003. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 84, 2042–2050.
https://doi.org/10.1890/02-0433
65 A.E. Zanne, , D.C. Tank, , W.K. Cornwell, , J.M. Eastman, , S.A. Smith, , R.G. FitzJohn, , D.J. McGlinn, , B.C. O’Meara, , A.T. Moles, , P.B. Reich, , D.L. Royer, , D.E. Soltis, , P.F. Stevens, , M. Westoby, , I.J. Wright, , L. Aarssen, , R.I. Bertin, , A. Calaminus, , R. Govaerts, , F. Hemmings, , M.R. Leishman, , J. Oleksyn, , P.S. Soltis, , N.G. Swenson, , L. Warman, , J.M. Beaulieu, , 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92.
https://doi.org/10.1038/nature12872
66 X.F. Zhang, , L. Zhao, , S.J. Xu, Jr, Y.Z. Liu, , H.Y. Liu, , G.D. Cheng, , 2013. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. Journal of Applied Microbiology 114, 1054–1065.
https://doi.org/10.1111/jam.12106
[1] SEL-00113-OF-DL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed