Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (4) : 358-366    https://doi.org/10.1007/s11458-011-0255-4
RESEARCH ARTICLE
Molecular structure and vibrational spectra of phenobaraitone by density functional theory and ab initio hartree-Fock calculations
Ruizhou ZHANG1(), Xiaohong LI1, Xianzhou ZHANG2
1. College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471003, China; 2. College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China
 Download: PDF(225 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quantum chemistry calculations have been performed using Gaussian03 program to compute optimized geometry, harmonic vibrational frequency along with intensities in IR and Raman spectra at RHF/6-31++G** and B3LYP/6-31++G** levels for phenobarbitone (C12H12N2O3) in the ground state. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR and FT-Raman spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions (PEDs) using MOLVIB program. A detailed interpretation of the infrared spectra of the title compound is reported. On the basis of the agreement between the calculated and observed results, the assignments of fundamental vibrational modes of phenobarbitone were examined and some assignments were proposed. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title compound have been constructed.

Keywords phenobarbitone      vibrational spectra      HF ab initio calculation      density functional theory (DFT)     
Corresponding Author(s): ZHANG Ruizhou,Email:lorna639@126.com   
Issue Date: 05 December 2011
 Cite this article:   
Ruizhou ZHANG,Xiaohong LI,Xianzhou ZHANG. Molecular structure and vibrational spectra of phenobaraitone by density functional theory and ab initio hartree-Fock calculations[J]. Front Chem Chin, 2011, 6(4): 358-366.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0255-4
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I4/358
Fig.1  (a) The atom numbering scheme of phenobarbitone; (b) the optimized structure of phenobarbitone
Bond length/?RHFB3LYPExp.a)Expb)Bond angle/°RHFB3LYPExp.a)Expb)
C1–N11.3781.3921.3761.369C1–N1–C2127.4127.8125.5125.7
C2–N11.3731.3901.3591.377N1–C2–O2122.8123.1-121.8
C2–N21.3721.3891.3621.374C2–N2–C3127.1127.4125.3125.8
C3–N21.3771.3901.3741.369N1–C2–N2114.2113.6-116.3
C3–C41.5371.5451.5151.525N2–C3–C4116.5116.3-117.8
C1–C41.5301.5361.5211.528N2–C2–O2122.9123.2121.5121.9
C4–C51.5541.5611.5381.551N2–C3–O3120.0123.6120.2120.2
C5–C61.5541.561-1.519C2–N1–H1119.5119.3120.0-
C4–C71.5511.5561.5451.543C1–N1–H1116.5116.3115.0-
C7–C81.3901.404-1.385C3–C4–C5110.6108.2-110.1
C8–C91.3871.394-1.387C3–C4–C7109.0106.3-108.4
C9–C101.3821.395-1.371C1–C4–C5108.6110.6-110.6
C10–C111.3851.394-1.371C1–C4–C7106.2108.9-106.2
C11–C121.3831.396-1.392C5–C4–C7112.0111.5109.9110.0
C12–C71.3941.402-1.387N1–C1–C4116.5116.3-117.6
N1–H10.9991.0150.910-C4–C5–C6116.6116.6-114.6
N2–H20.9991.0140.940-C4–C7–C8122.2121.9-122.3
C1–O11.1901.2161.2051.206C4–C7–C12119.3119.5-119.2
C2–O21.1891.2131.2311.221C8–C7–C12118.5118.6-118.5
C3–O31.1901.2161.2091.216C7–C8–C9120.7120.6-120.1
C8–C9–C10120.4120.4-121.3
C9–C10–C11119.3119.3-118.9
C10–C11–C12120.4120.4-120.7
C7–C12–C11120.7120.6-120.4
C1–C4–C3110.3111.2110.7111.4
C2–N2–H2119.7119.4120.0-
C3–N2–H2116.6116.4115.0-
C4–C3–O3123.5123.6123.2122.0
C4–C1–O1123.8124.0123.4122.2
O1–C1–N1119.7119.6120.5120.1
Tab.1  Optimized geometrical parameters of phenobarbitone with 6-31++G** basis set
D-H..Ad(D-H)D(H…A)D(D…A)∠DHA
N1-H1…O10.9992.452.25865.368
N2-H2…O30.9992.492.25664.370
Tab.2  The selected hydrogen bond lengths (?) and bond angles (° ) calculated by RHF/6-31+ + G** method
Atom no.HF/6-31++G**B3LYP/6-31++G**Atom no.HF/6-31++G**B3LYP/6-31++G**
C10.830.61H10.430.36
C21.030.77H20.430.36
C30.850.64C70.000.12
C4-0.30-0.18C8-0.21-0.17
N1-0.90-0.66C9-0.20-0.13
N2-0.91-0.67C10-0.20-0.12
O1-0.56-0.48C11-0.20-0.14
O2-0.58-0.47C12-0.22-0.17
O3-0.57-0.48
Tab.3  Atomic charges for optimized geometry of phenobarbitone
Calculated frequenciesExperimentala) (IR)Assignments[PED]
HF/6-31++G**B3LYP/6-31++G**
1405(0.09,0.22)401(0.05,0.29)Φ(ring)[95]
2438(2.19,1.93)432(2.80,2.86)Φ(ring)[57]
3485(7.07,1.72)482(9.32,2.57)δ(N–C=O)[45], Φ(ring) [34]
4495(2.48,2.92)491(1.45,2.68)Φ(ring)[77]
5540(50.51,1.90)536(40.82,2.20)560δ(C–C–C) [38], Φ(ring)[54]
6604(4.18,1.52)609(2.47,2.64)δ(N–H)oop [39], α(ring)[51]
7609(12.13,5.45)613(3.70,11.58)618δ(C–C–C) [35], α(ring)[47]
8617(3.01,9.58)619(8.56,5.54)δ(N–H)oop[75]
9642(137.62,2.20)655(59.41,2.42)δ(N–H)oop[72]
10668(2.47,1.04)660(22.28,1.54)672δ(C–C=O)[52], δ(N–H)oop [37]
11694(0.74,1.00)689(21.75,1.05)δ(C–H)oop[90]
12696(46.51,1.97)693(17.07,1.55)δ(N–C=O) [41],α(ring)[50]
13713(34.67,2.10)706(28.96,1.31)693δ(C–C=O)[65], δ(C–H)oop [31]
14739(2.18,0.48)719(2.81,0.32)716δ(N–C=O)[88]
15752(37.89,0.77)722(100.55,0.29)752δ(N–C=O)[85]
16761(127.23,0.57)742(27.32,1.81)δ(C–H)oop[76]
17779(33.25,0.84)769(16.74,1.28)δ(C–H)oop[61],δ(C–H)ethyl [29]
18860(0.68,2.06)834(0.58,4.08)δ(C-H)oop[95]
19914(8.64,9.06)897(2.05,6.35)δ(C-H)oop[62],δ(C-H)ethyl [27]
20937(7.28,2.69)905(2.39,1.32)δ(C–H)oop[85]
21944(6.02,5.92)940(10.18,4.97)δ(C–H)methyl[71]
22960(1.72,1.80)945(0.66,0.47)δ(C–H)oop[95]
23974(2.10,23.35)956(3.08,2.73)δ(C–H)oop[57], ν(C–C) [38]
24995(0.71,0.27)969(0.28,0.29)δ(C–H)oop[90]
251005(8.46,1.63)980(3.20,22.83)α(ring)[95]
261013(2.43,3.95)994(6.32,1.26)ν(C–N)[90]
271015(3.05,7.31)1024(5.03,18.02)ν(ring)[85]
281066(6.04,2.07)1059(7.38,7.74)ν(C–C)[69]
291074(13.83,7.13)1080(8.21,1.97)δ(C–H)ip[52],δ(C–H)methyl [32]
301081(2.73,2.65)1084(5.35,0.73)δ(C–H)ip [35],δ(C–H)methyl [41]
311087(10.61,2.56)1120(5.91,7.91)δ(C–H)ip [25],δ(C–H)methyl [31],ν(C–C) [32]
321133(5.67,3.24)1146(5.34,6.23)1224δ(C–H)ip [28], δ(C–H)methyl [34], ν(C–C) [30]
331167(4.47,2.89)1154(0.53,4.64)δ(C–H)ip[93]
341186(2.53,5.44)1177(32.56,1.18)ν(C–N)[50], δ(C–H)methyl [37]
351189(9.02,2.63)1188(4.17,7.16)δ(C–H)ip[95]
361215(41.77,2.34)1281(35.30,5.08)1236ν(C=C)[47], δ(C–H)ethyl[43]
371295(78.26,6.43)1290(195.52,1.33)1300ν(C=C) [38], ν(C–N)[45]
381318(362.51,0.62)1303(115.71,3.88)1315ν(C=C) [28], δ(C–H)ethyl [30],ν(C–N) [34]
391338(29.74,0.58)1331(12.35,0.46)δ(C–H)ip[90]
401354(4.25,0.55)1337(4.63,0.58)δ(C–H)ethyl[84]
411380(58.99,0.19)1350(12.89,0.48)1350δ(N–H)ip[45], ν(C–N) [32]
421402(10.67,1.88)1377(217.27,3.48)1368ν(C-N)[72]
431414(227.44,3.02)1387(20.54,1.95)δ(C-H)methyl[77]
441430(104.11,4.60)1396(84.07,3.57)δ(N-H)ip[42], ν(C-N) [38]
451442(5.79,1.22)1440(6.36,1.80)δ(C–H)ip[80]
461464(3.38,16.36)1462(4.08,13.71)δ(C–H)methylene[87]
471468(6.17,16.81)1471(5.28,19.58)δ(C–H)methyl[75]
481482(2.94,5.68)1488(11.25,2.17)δ(C–H)methyl [30], ν(C=C)[57]
491495(23.14,0.73)1490(11.12,5.86)1497δ(C–H)ethyl[80]
501591(1.61,7.04)1579(2.03,6.26)ν(C=C)[87]
511614(4.35,24.79)1598(4.90,29.99)ν(C=C)[90]
521775(439.67,8.91)1722(297.02,7.75)1678ν(C=O)[87]
531797(912.22,3.38)1753(370.42,17.65)1712ν(C=O)[83]
541818(317.63,28.88)1785(476.95,40.82)ν(C=O)[85]
552874(37.47,70.92)2944(23.55,101.56)ν(C–H)methylene[90]
562880(29.89,177.32)2951(28.20,143.46)ν(C–H)methyl[95]
572927(48.73,61.09)3006(3.82,50.10)ν(C–H)ethyl[100]
582948(4.84,48.10)3009(34.83,58.09)ν(C–H)ethyl[100]
592978(15.18,16.37)3051(9.59,18.01)ν(C–H)ethyl[100]
603003(0.02,51.19)3069(0.06,53.27)ν(C–H) phenyl[100]
613013(16.48,100.82)3079(14.53,110.57)ν(C–H) phenyl[99]
623025(30.18,136.86)3091(22.85,143.99)ν(C–H) phenyl[100]
633040(7.67,51.65)3103(6.01,7.48)ν(C–H) phenyl[100]
643042(2.01,114.60)3105(4.28,172.30)ν(C–H)phenyl[100]
653432(136.48,46.85)3460(81.24,76.38)3207νs(N–H) [100]
663435(88.39,95.18)3463(60.45,129.62)3308νas(N–H) [100]
Tab.4  Calculated and experimental fundamental frequencies (cm) for phenobarbitone
Fig.2  (a) The experimental FT-IR vibrational spectra of phenobarbitone; (b) the experimental FT-Raman vibrational spectra of phenobarbitone
Fig.3  (a) The calculated FT-IR vibrational spectra of phenobarbitone by B3LYP method; (b) the calculated FT-Raman vibrational spectra of phenobarbitone by B3LYP method
ParametersRHFB3LYP
Total energy-794.717556-799.501595
Zero-point energy155.08101144.14073
Rotational constants0.64987,0.41626,0.386480.64444, 0.40548, 0.38035
Entropytotal117.829122.074
Entropytranslational42.22842.228
Entropyrotational32.39732.447
Entropyvibrational43.20447.399
Dipole moment2.05771.5417
Tab.5  Theoretically computed energies (a.u.), zero-point vibrational energies (kcal·mol), rotational constants (GHz), entropies (cal·mol·K) and dipole moment () for the title compound with 6-31++G** basis set
1 Brown, M. L.; Brown, G. B.; Brouillette, W. J., J. Med. Chem. 1997, 40, 602–607
doi: 10.1021/jm960692v pmid:9046351
2 Williams, P. P., Acta Crystallogr. B 1974, 30, 12
3 Gunasekaran, S.; Thilak Kumar, R.; Periyanayagasamy, V.; Raihana, M. P.; Asian J. Chem. 2005, 17, 1211
4 Gunasekaran, S.; Ponnambalam, U.; Muthu, S.; Ponnusamy, S.; Asian, J., Chem. 2004, 16, 1513
5 Gunasekaran, S.; Ponnambalam, U.; Muthu, S., Acta Ciencia Indica XXX. 2004, 1, 15
6 Gunasekaran, S.; Ponnambalam, U.; Muthu, S.; Mariappan, L.Asian. J. Phys. 2003, 16, 51
7 Gunasekaran, S.; Shankari, G.; Ponnusamy, S., Spectrochimica Acta Part A. 2005, 61, 117-127
doi: 10.1016/j.saa.2004.03.030
8 Gunasekaran, S.; Thilak Kumar, R.; Ponnusamy, S., Spectrochimica Acta Part A. 2006, 65, 1041-1052
doi: 10.1016/j.saa.2006.01.037
9 Korth, H. G.; de Heer, M. I.; Mulder, P., J. Phys. Chem. 2002, 106, 8779
10 Chowdhury, P. K., J. Phys. Chem. A 2003, 107, 5692-5696
doi: 10.1021/jp034538d
11 Chis, V., Chem. Phys. 2004, 300, 1-11
doi: 10.1016/j.chemphys.2004.01.003
12 Asensio, A.; Kobko, N.; Dannenberg, J. J., J. Phys. Chem. A 2003, 107, 6441-6443
doi: 10.1021/jp0344646
13 Jensen, F., Introduction to Computational Chemistry, Wiley, New York , 1999.
14 Rauhut, G.; Pulay, P., J. Phys. Chem. 1995, 99, 3093-3100
doi: 10.1021/j100010a019
15 Sinha, P.; Boesch, S. E.; Gu, C.; Wheeler, R. A.; Wilson, A. K., J. Phys. Chem A. 2004, 108, 9213-9217
doi: 10.1021/jp048233q
16 Scott, A. P.; Radom, L., J. Phys. Chem. 1996, 100, 16502-16513
doi: 10.1021/jp960976r
17 Kolev, T. M.; Stamboliyskaya, B. A.,Spectrochimica acta Part A . 2002, 58, 3127
18 Pfeiffer, M.; Baier, F.; Stey, T.; Leusser, D.; Stalke, D.; Engels, B.; Moigno, D.; Kiefer, W., J. Mol. Model. 2000, 6, 299-311
doi: 10.1007/PL00010731
19 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian ’03, Revision C. 01, Gaussian, Inc., Wallingford, CT , 2004
20 Becke, A. D., J. Chem. Phys. 1993, 98, 5648
doi: 10.1063/1.464913
21 Lee, C.; Yang, W.; Parr, R. G., Phys. Rev. B 1988, 37, 785-789
doi: 10.1103/PhysRevB.37.785
22 Becke, B. D., Phys. Rev. B 1988, 38, 3098
23 Vosko, S. H.; Wilk, L.; Nusair, M., Can. J. Phys. 1980, 58, 1200-1211
doi: 10.1139/p80-159
24 Fast, P. L.; Corchado, J.; Sanchez, M. L.; Truhlar, D. G., J. Phys. Chem. A 1999, 103, 3139-3143
doi: 10.1021/jp9900382
25 Sundius T., MOLVIB: A program for harmonic force field calculations, QCPE program No. 807, 2002
26 Sundius, T., Vib. Spectrosc. 2002, 29, 89-95
doi: 10.1016/S0924-2031(01)00189-8
27 Keresztury, G.; Holly, S.; Varga, J.; Besenyei, G.; Wang, A. Y.; Durig, J. R., Spectrochimica Acta Part A. 1993, 49, 2007-2026
doi: 10.1016/S0584-8539(09)91012-1
28 Keresztury, G.; Chalmers, J. M.; Griffith, P. R., RamanSpectroscopy: Theory in Handbook of Vibrational Spectroscopy, vol. 1, John Wiley & Sons Ltd. , 2002, p127
29 Coates, J., in: Meyers R.A. (Ed.), Interpretation of Infrared Spectra, A Practical Approach, John Wiley and Sons Ltd., Chichester , 2000, p235
30 Roeges, N. P. G., A Guide to Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York , 1994, p74
31 Socrates, G., Infrared Characteristic Group Frequencies, John Wiley, New York , 2000, p158
32 Chithambarathanu, T.; Umayourbaghan, V.; Krishnakumar, V., Indian J.Pure Appl. Phys . 2003, 41, 844
33 Nakkeeran, C., DissertationTip, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, 1997.
34 Parasuraman, M., DissertationTip, University of Madras, Chennai, India, 2001.
35 Krishnakumar, V.; John Xavier, R., Indian, J.Pure Appl. Phys. 2003, 41, 597
36 Mohan, S.; Sundaraganesan, N.; Mink, J., Spectrochimica Acta Part A. 1991, 47, 1111-1115
doi: 10.1016/0584-8539(91)80042-H
37 Panicker, C. Y.; Varghese, H. T.; Philip, D. P.; Nogueira, H. I. S.; Kastkova, K., Spectrochimica Acta Part A. 2007, 67, 1313-1320
doi: 10.1016/j.saa.2006.09.042
38 Barthes, M.; De Nunzio, G.; Riber, G., Synth. Met. 1996, 76, 337-340
doi: 10.1016/0379-6779(95)03484-2
39 Xavier Jesu Raja, S.; William, A.; Gunasekaran, S., Orient J. Chem. 1994, 10, 3
40 Marshell, J.; Gunasekaran, S.,Indian J. Phys. B 1996, 70, 505
41 Sato, H.; Dybal, J.; Murakami, R.; Noda, I.; Ozaki, Y., J. Mol. Struct. 2005, 35, 744
[1] Asadollah FARHADI, Mohammad Ali TAKASSI. Applying density functional theory on tautomerism in 3,4-dihydropyrimidin-2(1H)-ones[J]. Front Chem Chin, 2011, 6(2): 142-146.
[2] Xiaohong LI, Ruizhou ZHANG, Xiangdong YANG, . QSAR study on fluoroquinolones as antibacterial agents active for Pseudomonas aeruginosa[J]. Front. Chem. China, 2010, 5(1): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed