Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (2) : 174-178    https://doi.org/10.1007/s11705-012-1276-3
RESEARCH ARTICLE
Evolutionary engineering of Phaffia rhodozyma for astaxanthin-overproducing strain
Jixian GONG1,2(), Nan DUAN2, Xueming ZHAO2
1. School of Textiles, Tianjin Polytechnic University, Tianjin 300160, China; 2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(402 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Evolutionary engineering is a novel whole-genome wide engineering strategy inspired by natural evolution for strain improvement. Astaxanthin has been widely used in cosmetics, pharmaceutical and health care food due to its capability of quenching active oxygen. Strain improvement of Phaffia rhodozyma, one of the main sources for natural astaxanthin, is of commercial interest for astaxanthin production. In this study a selection procedure was developed for adaptive evolution of P. rhodozyma strains under endogenetic selective pressure induced by additive in environmental niches. Six agents, which can induce active oxygen in cells, were added to the culture medium respectively to produce selective pressure in process of evolution. The initial strain, P. rhodozyma AS2-1557, was mutagenized to acquire the initial strain population, which was then cultivated for 550 h at selective pressure and the culture was transferred every 48h. Finally, six evolved strains were selected after 150 generations of evolution. The evolved strains produced up to 48.2% more astaxanthin than the initial strain. Our procedure may provide a promising alternative for improvement of high-production strain.

Keywords evolutionary engineering      astaxanthin      strain improvement     
Corresponding Author(s): GONG Jixian,Email:gongjixian@126.com   
Issue Date: 05 June 2012
 Cite this article:   
Jixian GONG,Nan DUAN,Xueming ZHAO. Evolutionary engineering of Phaffia rhodozyma for astaxanthin-overproducing strain[J]. Front Chem Sci Eng, 2012, 6(2): 174-178.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1276-3
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I2/174
Fig.1  Stress resistance of wild strain. The growth curve of in the culture with (a) ionone, (b) diphenylamine, (c) NaCl, (d) TiO, (e) HO, and (f) NaClO
Fig.2  Evolution of in cultures containing (a) ionone, (b) diphenylamine, (c) NaCl, (d) TiO, (e) HO, and (f) NaClO
Fig.3  Growth character of the evolved strains
Fig.4  Astaxanthin of evolved strain by cultured in medium with (1) ionone, (2) diphenylamine, (3) NaCl, (4) TiO, (5) HO, (6) NaClO, and (7) the wild strain.
1 Selifonova O, Valle F, Schellenberger V. Rapid evolution of novel traits in microorganisms. Applied and Environmental Microbiology , 2001, 67(8): 3645-3649
doi: 10.1128/AEM.67.8.3645-3649.2001
2 Sonderegger M, Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Applied and Environmental Microbiology , 2003, 69(4): 1990-1998
doi: 10.1128/AEM.69.4.1990-1998.2003
3 Steiner P, Sauer U. Long-term continuous evolution of acetate resistant Acetobacter aceti. Biotechnology and Bioengineering , 2003, 84(1): 40-44
doi: 10.1002/bit.10741
4 van Maris A J A, Geertman J M A, Vermeulen A, Groothuizen M K, Winkler A A, Piper M D W, van Dijken J P, Pronk J T. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C-2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Applied and Environmental Microbiology , 2004, 70(1): 159-166
doi: 10.1128/AEM.70.1.159-166.2004
5 Cakar Z P, Seker U O S, Tamerler C, Sonderegger M, Sauer U. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Research , 2005, 5(6-7): 569-578
doi: 10.1016/j.femsyr.2004.10.010
6 Kuyper M, Toirkens M, Diderich J, Winkler A, Vandijken J, Pronk J. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Research , 2005, 5: 925-934
doi: 10.1016/j.femsyr.2005.04.004
7 Wisselink H W, Toirkens M J, del Rosario Franco Berriel M, Winkler A A, van Dijken J P, Pronk J T, van Maris A J A. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Applied and Environmental Microbiology , 2007, 73(15): 4881-4891
doi: 10.1128/AEM.00177-07
8 Guimaraes P M R, Francois J, Parrou J L, Teixeira J A, Domingues L. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Applied and Environmental Microbiology , 2008, 74(6): 1748-1756
doi: 10.1128/AEM.00186-08
9 Jantama K, Haupt M J, Svoronos S A, Zhang X, Moore J C, Shanmugam K T, Ingram L O. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering , 2008, 99(5): 1140-1153
doi: 10.1002/bit.21694
10 Meijnen J P, de Winde J H, Ruijssenaars H J. Engineering pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose. Applied and Environmental Microbiology , 2008, 74(16): 5031-5037
doi: 10.1128/AEM.00924-08
11 Cakar Z P, Alk?m C, Turanl? B, Tokman N, Akman S, Sar?kaya M, Tamerler C, Benbadis L, Fran?ois J M. Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. Journal of Biotechnology , 2009, 143(2): 130-138
doi: 10.1016/j.jbiotec.2009.06.024
12 Gilbert A, Sangurdekar D P, Srienc F. Rapid strain improvement through optimized evolution in the cytostat. Biotechnology and Bioengineering , 2009, 103(3): 500-512
doi: 10.1002/bit.22272
13 Wisselink H W, Toirkens M J, Wu Q, Pronk J T, Maris A JA. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Applied and Environmental Microbiology , 2009, 75(4): 907-914
doi: 10.1128/AEM.02268-08
[1] Seiichi Taguchi. Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(1): 139-142.
[2] Ruizhao Wang, Xiaoli Gu, Mingdong Yao, Caihui Pan, Hong Liu, Wenhai Xiao, Ying Wang, Yingjin Yuan. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae[J]. Front. Chem. Sci. Eng., 2017, 11(1): 89-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed