Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2014, Vol. 8 Issue (1) : 55-63    https://doi.org/10.1007/s11705-013-1352-3
RESEARCH ARTICLE
The dehydration behavior and non-isothermal dehydration kinetics of donepezil hydrochloride monohydrate (Form I)
Tiantian LIU1, Yuanyuan RAN1, Bochao WANG1, Weibing DONG2, Songgu WU1, Junbo GONG1()
1. The National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
 Download: PDF(335 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Powders of donepezil hydrochloride monohydrate (Form I) underwent isomorphic dehydration, losing 3% w/w water between 90% and 10% relative humidity (RH) without changing its powder X-ray pattern. Below 10% RH, additional dehydration occurred in conjunction with a reversible phase transition between the monohydrate state and a dehydrated state, with a 4.0% w/w loss to 0% RH. A combination of methods was used to understand the structural changes occurring during the desolvation process, including dynamic vapor sorption measurements, thermal analysis and powder X-ray diffraction. Form I showed the characteristics of the channel hydrate, whose non-isothermal dehydration behavior proceeds in two steps: (1) the loss of non-crystalline water adsorbed on the surface, and (2) the loss of one crystalline water in the channel. Dehydrated Form I is structurally similar to the monohydrate Form I. According to the heat of fusion and the crystal density criteria, the two crystal forms belonged to the univariant system, and the anhydrate (Form III) is stable. The dehydration kinetics was achieved from the TG-DTG curves by both the Achar method and the Coats-Redfern method with 15 frequently cited basic kinetic models. The dynamic dehydration processes for steps 1 and 2 were best expressed by the Zhuralev-Lesokin-Tempelman equation, suggesting a three-dimensional diffusion-controlled mechanism.

Keywords dehydration      thermal analysis      transformation      dehydration kinetics     
Corresponding Author(s): GONG Junbo,Email:junbo_gong@tju.edu.cn   
Issue Date: 05 March 2014
 Cite this article:   
Bochao WANG,Weibing DONG,Songgu WU, et al. The dehydration behavior and non-isothermal dehydration kinetics of donepezil hydrochloride monohydrate (Form I)[J]. Front Chem Sci Eng, 2014, 8(1): 55-63.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1352-3
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I1/55
Fig.1  Chemical structure of donepezil hydrochloride (DHCl)
NumberKinetics modelf(α)G(α)
1One-dimensional diffusion1/(2α)α2
2Two-dimensional diffusion-[ln(1-α)]-1(1 -α)ln(1 -α) + α
3Three-dimensional diffusion (J-equation)3(1 -α)2/3[1 - (1 -α)1/3] -1/2[1 - (1 -α)1/3]2
4Three-dimensional diffusion(G-B equation)3[(1 -α)-1/3 - 1]-1/2(1 - 2α/3) - (1-α)2/3
5Zhuralev-Lesokin-Tempelman3(1 -α)4/3[(1 -α)-1/3 - 1]-1/2[(1-α)-1/3 - 1]2
6Reverse Jander3(1+α)2/3[(1+α)1/3 - 1]-1/2[(1+α)1/3 - 1]2
7Random nucleation (A-E equation, n = 1)1- α-ln(1 - α)
8Random nucleation (A-E equation, n = 2)(1-α)[-ln(1-α)]-1/2[-ln(1 - α)]2
9Random nucleation (A-E equation, n = 3)(1-α)[-ln(1-α)]-2/3[-ln(1 - α)]3
10Random nucleation (A-E equation, n = 4)(1-α)[-ln(1-α)]-3/4[-ln(1 - α)]4
11One-dimensional phase boundary reaction1Α
12Two-dimensional phase boundary reaction2(1 -α)1/21 - (1- α)1/2
13Three-dimensional phase boundary reaction3(1 -α)2/31 - (1- α)1/3
14Second-order reaction(1 - α)21/(1-α) - 1
15Prout-Tompkinsα(1 - α)ln[α/(1-α)]
Tab.1  Thermal analysis kinetic functions cited frequently
Fig.2  DVS isotherms of Form I (a) and Form III (b) at 25°C using 10% RH steps
Fig.3  Comparison of an experimental PXRD patterns for Form I, dehydrated Form I and Form III at 298 K
Fig.4  (a) DVS isotherm for Form I at 45°C, obtained using 10% RH steps (with a 5% RH step at low humidity). The sorption and desorption cycles are super-imposable above 10% RH; below this level, deviations are observed. (b) DVS isotherm at 45°C obtained using 1% RH steps, showing hysteresis effects
Fig.5  TG-DTG spectrum for the dehydration of Form I DHCl
No.Achar methodCoats-Redfern method
E/(kJ/mol)ln(A/s-1)R2E/(kJ/mol)ln(A/s-1)R2
153.5628712.727420.16657212.401269.811690.73414
2111.548133.310650.51645238.607178.886920.78207
3197.950763.414260.84436278.071992.01820.84799
4142.537843.137760.67736250.50181.802230.80448
5364.1893124.24370.95707389.4397133.0990.94591
627.664440.8634330.05476194.156660.720290.70612
7111.242835.120360.86543160.914452.743880.90139
8277.786894.833290.93446327.4478112.45870.90451
9444.3229154.25120.93138493.9812171.87410.90552
10610.859213.55130.92712660.5146231.1690.90601
11-55.2036-25.77970.44275103.390831.194360.72337
1228.242834.0577830.3142126.219739.097290.81102
1355.909513.775460.66873136.226242.438710.84253
14277.242895.859210.89374270.034793.123030.96612
151.857046-2.912740.000608
Tab.2  Kinetic parameters for Form I DHCl dehydration process
Fig.6  Non-isothermal TG curves for Z-L-T mechanism: (a) Achar method, (b) C-R method
Fig.7  The KCEs of the dehydration process for Form I DHCl
StepCalculated by linear least-square method
a/( mol/kJ)BR2
10.36004-6.425880.99951
Tab.3  Kinetic compensation parameters for dehydration for Form I DHCl
Fig.8  DSC curves of Form I(a) and Form III(b) at a heating rate of 5°C/min
m0m1m2m3ρsρs ˉ
Form I10.569518.579210.673318.57360.71890.7431
10.570318.573510.675218.5730.7541
11.146718.76211.249218.76180.7562
Form III10.745518.754110.839718.77811.0171.016
10.729918.750710.83918.77921.026
10.570918.543810.67618.56961.004
Tab.4  Density of Form I & III DHCl
1 Han J, Gupte S, Suryanarayanan R. Applications of pressure differential scanning calorimetry in the study of pharmaceutical hydrates. II. Ampicillin trihydrate. International Journal of Pharmaceutics , 1998, 170(1): 63–72
doi: 10.1016/S0378-5173(98)00123-9
2 Krzyzaniak J F, Williams G R, Ni N. Identification of phase boundaries in anhydrate/hydrate systems. Journal of Pharmaceutical Sciences , 2007, 96(5): 1270–1281
doi: 10.1002/jps.20941
3 Khankari R K, Grant D J W. Pharmaceutical hydrates. Thermochimica Acta , 1995, 248(0): 61–79
doi: 10.1016/0040-6031(94)01952-D
4 Wang S L, Wong Y C, Cheng W T, Lin S Y. A continuous process for solid-state dehydration, amorphization and recrystallization of metoclopramide HCL monohydrate studied by simultaneous DSC-FTIR microspectroscopy. Journal of Thermal Analysis and Calorimetry , 2011, 104(1): 261–264
doi: 10.1007/s10973-010-0998-z
5 Byrn S R, Xu W, Newman A W. Chemical reactivity in solid-state pharmaceuticals: formulation implications. Advanced Drug Delivery Reviews , 2001, 48(1): 115–136
doi: 10.1016/S0169-409X(01)00102-8
6 Garnier S, Petit S, Coquerel G. Dehydration mechanism and crystallisation behaviour of lactose. Journal of Thermal Analysis and Calorimetry , 2002, 68(2): 489–502
doi: 10.1023/A:1016087702409
7 Legendre B, Baziard-Mouysset G, Anastassiadou M, Leger J M, Payard A. Polymorphic study of 2-(2-benzofuryl) Delta-2 imidazoline. Journal of Thermal Analysis and Calorimetry , 2001, 66(2): 659–673
doi: 10.1023/A:1013102025734
8 Willart J F, Descamps M. Solid State Amorphization of Pharmaceuticals. Molecular Pharmaceutics , 2008, 5(6): 905–920
doi: 10.1021/mp800092t
9 Byrn S R, Pfeiffer R R, Stephenson G, Grant D J W, Gleason W B. Solid-State Pharmaceutical Chemistry. Chemistry of Materials , 1994, 6(8): 1148–1158
doi: 10.1021/cm00044a013
10 Vippagunta S R, Brittain H G, Grant D J W. Crystalline solids. Advanced Drug Delivery Reviews , 2001, 48(1): 3–26
doi: 10.1016/S0169-409X(01)00097-7
11 Stephenson G A, Groleau E G, Kleemann R L, Xu W, Rigsbee D R. Formation of isomorphic desolvates: Creating a molecular vacuum. Journal of Pharmaceutical Sciences , 1998, 87(5): 536–542
doi: 10.1021/js970449z
12 Stephenson G A, Stowell J G, Toma P H, Pfeiffer R R, Byrn S R. Solid-state investigations of erythromycin A dihydrate: structure, NMR spectroscopy, and hygroscopicity. Journal of Pharmaceutical Sciences , 1997, 86(11): 1239–1244
doi: 10.1021/js9701667
13 Vogt F G, Brum J, Katrincic L M, Flach A, Socha J M, Goodman R M, Haltiwanger R C. Physical, crystallographic, and spectroscopic characterization of a crystalline pharmaceutical hydrate: Understanding the role of water. Crystal Growth & Design , 2006, 6(10): 2333–2354
doi: 10.1021/cg060324k
14 Bauer J F, Dziki W, Quick J E. Role of an isomorphic desolvate in dissolution failures of an erythromycin tablet formulation. Journal of Pharmaceutical Sciences , 1999, 88(11): 1222–1227
doi: 10.1021/js9900102
15 Te R L, Griesser U J, Morris K R, Byrn S R, Stowell J G. X-ray Diffraction and Solid-State NMR Investigation of the Single-Crystal to Single-Crystal Dehydration of Thiamine Hydrochloride Monohydrate. Crystal Growth & Design , 2003, 3(6): 997–1004
doi: 10.1021/cg0340749
16 Abu Bakar M R, Nagy Z K, Rielly C D. A combined approach of differential scanning calorimetry and hot-stage microscopy with image analysis in the investigation of sulfathiazole polymorphism. Journal of Thermal Analysis and Calorimetry , 2010, 99(2): 609–619
doi: 10.1007/s10973-009-0001-z
17 Kumar S, Chawla G, Sobhia M E, Bansal A K. Characterization of solid-state forms of mebendazole. Die Pharmazie , 2008, 63(2): 136–143
18 Murdande S B, Pikal M J, Shanker R M, Bogner R H. Solubility Advantage of Amorphous Pharmaceuticals: I. A Thermodynamic Analysis. Journal of Pharmaceutical Sciences , 2010, 99(3): 1254–1264
doi: 10.1002/jps.21903
19 Sugimoto H, Iimura Y, Yamanishi Y, Yamatsu K. Synthesis and Structure-Activity Relationships of Acetylcholinesterase Inhibitors: 1-Benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine Hydrochloride and Related Compounds. Journal of Medicinal Chemistry , 1995, 38(24): 4821–4829
doi: 10.1021/jm00024a009
20 Sugimoto H, Ogura H, Arai Y, Iimura Y, Yamanishi Y. Research and Development of Donepezil Hydrochloride, a New Type of Acetylcholinesterase Inhibitor. Japanese Journal of Pharmacology , 2002, 89(1): 7–20
doi: 10.1254/jjp.89.7
21 Rogers Sl D R S M R C F L T, Donepezil improves cognition and global function in alzheimer disease: A 15-week, double-blind, placebo-controlled study. Archives of Internal Medicine , 1998, 158(9): 1021–1031
doi: 10.1001/archinte.158.9.1021
22 Mihara M, Ohnishi A, Tomono Y, Hasegawa J, Shimamura Y, Yamazaki K, Morishita N. Pharmacokinetics of E2020, a new compound for Alzheimer's disease, in healthy male volunteers. International Journal of Clinical Pharmacology, Therapy, and Toxicology , 1993, 31(5): 223–229
23 Doody R S. Clinical benefits of a new piperidine-class AChE inhibitor. European Neuropsychopharmacology , 1999, 9, Supplement 2(0): S69–S77
24 Málek J. The kinetic analysis of non-isothermal data. Thermochimica Acta , 1992, 200(0): 257–269
doi: 10.1016/0040-6031(92)85118-F
25 Narahari Achar B N, Bridley G W, Sharp J H. Thermal decomposition kinetics of some new unsaturated polyesters, in: Proc. Int. Clay Conf., Jerusalem , 1966, 67
26 Coats A W, Redfern J P. Kinetic Parameters from Thermogravimetric Data. Nature , 1964, 201(4914): 68–69
doi: 10.1038/201068a0
27 Mumtaz H S, Hounslow M J, Seaton N A, Paterson W R. Orthokinetic Aggregation During Precipitation: A Computational Model for Calcium Oxalate Monohydrate. Chemical Engineering Research & Design , 1997, 75(2): 152–159
doi: 10.1205/026387697523615
28 Han J, Suryanarayanan R. Influence of Environmental Conditions on the Kinetics and Mechanism of Dehydration of Carbamazepine Dihydrate. Pharmaceutical Development and Technology , 1998, 3(4): 587–596
doi: 10.3109/10837459809028643
29 Zhu H, Xu J, Varlashkin P, Long S, Kidd C. Dehydration, hydration behavior, and structural analysis of fenoprofen calcium. Journal of Pharmaceutical Sciences , 2001, 90(7): 845–859
doi: 10.1002/jps.1038
30 Malaj L, Censi R, Martino P D. Mechanisms for Dehydration of Three Sodium Naproxen Hydrates. Crystal Growth & Design , 2009, 9(5): 2128–2136
doi: 10.1021/cg800684v
31 Mane R B, Rode C V. Continuous Dehydration and Hydrogenolysis of Glycerol over Non-Chromium Copper Catalyst: Laboratory-Scale Process Studies. Organic Process Research & Development , 2012, 16(5): 1043–1052
doi: 10.1021/op200383r
[1] Tian Jiang, Yuhui Hou, Tengjiang Zhang, Xudong Feng, Chun Li. Construction of a CaHPO4-PGUS1 hybrid nanoflower through protein-inorganic self-assembly, and its application in glycyrrhetinic acid 3-O-mono-β-D-glucuronide preparation[J]. Front. Chem. Sci. Eng., 2019, 13(3): 554-562.
[2] Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono. Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill[J]. Front. Chem. Sci. Eng., 2019, 13(1): 164-170.
[3] Junyan GAO, Yanlei WANG, Hongxun HAO. Investigations on dehydration processes of trisodium citrate hydrates[J]. Front Chem Sci Eng, 2012, 6(3): 276-281.
[4] Dingding JING, Yongli WANG, Zhijian CHEN, Lina ZHOU, Jingkang WANG. Polymorphism and crystal transformation of penicillin sulfoxide[J]. Front Chem Sci Eng, 2011, 5(4): 442-447.
[5] Lina WU, Xiaoxing SHI, Qun CUI, Haiyan WANG, He HUANG. Effects of the SAPO-11 synthetic process on dehydration of ethanol to ethylene[J]. Front Chem Sci Eng, 2011, 5(1): 60-66.
[6] LIU Yi, JIAO Qingcai, YIN Xiaoxing. Preparation of D-lysine by chemical reaction and microbial asymmetric transformation[J]. Front. Chem. Sci. Eng., 2008, 2(1): 40-43.
[7] ZHANG Yatao, FAN Lihai, ZHANG Lin, CHEN Huanlin. Research progress in removal of trace carbon dioxide from closed spaces[J]. Front. Chem. Sci. Eng., 2007, 1(3): 310-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed