Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (3) : 276-281    https://doi.org/10.1007/s11705-012-1206-4
RESEARCH ARTICLE
Investigations on dehydration processes of trisodium citrate hydrates
Junyan GAO, Yanlei WANG, Hongxun HAO()
The State Research Center of Industrialization for Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(331 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The dehydration processes of trisodium citrate (Na3C6H5O7) hydrates were investigated using thermogravimetry (TG), differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). It was found that the temperature of dehydration of trisodium citrate dihydrate was at 430.99 K. For trisodium citrate pentahydrate, there is a two-step dehydration process and the endothermal peaks appear at 337.23 K and 433.83 K, respectively. During the first step of dehydration process, the structure of trisodium citrate pentahydrate changed into the structure of trisodium citrate dihydrate. In addition, the kinetics of dehydration for trisoidum citrate hydrates was also investigated using TG data. According to the activation energies of dehydration calculated by Ozawa equation, it was found that the dehydration mechanisms of the two hydrates were different.

Keywords trisodium citrate      dehydration      TG/DSC      PXRD     
Corresponding Author(s): HAO Hongxun,Email:hhx73@hotmail.com   
Issue Date: 05 September 2012
 Cite this article:   
Yanlei WANG,Hongxun HAO,Junyan GAO. Investigations on dehydration processes of trisodium citrate hydrates[J]. Front Chem Sci Eng, 2012, 6(3): 276-281.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1206-4
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I3/276
Fig.1  (a) Crystal structure of TC dihydrate; (b) Crystal structure of TC pentahydrate
Fig.2  (a1, b1) The PXRD patterns for TC dihydrate and TC pentahydrate; (a2, b2) The PXRD patterns simulated from single crystal X-ray data of the two hydrates
Fig.3  TG/DSC profile of TC dihydrate
Fig.4  PXRD profile for TC dihydrate and its dehydration product at 473K
Fig.5  TG/DSC profile for TC pentahydrate
Fig.6  PXRD profile for TC dihydrate and the dehydration product of TC pentahydrate at 403K
Fig.7  Ozawa plots for the first step dehydration of TC pentahydrate and the dehydration of TC dihydrate at heating rate of 2.5 K·min, 5 K·min, 7.5 K·min, 10 K·min
Conversion rateα /%Activation energy Eα /( kJ·mol-1)
TC pentahydrateRpenta2TC dihydrateRdi2
10365.560.9956541.540.9914
20198.830.9843604.580.9932
30150.260.9814638.380.9923
40126.770.9853694.230.9920
50113.970.9849786.300.9938
60104.850.9853705.080.9971
7098.170.9876484.040.9985
8092.000.9876426.550.9905
9086.190.9875372.690.9864
Tab.1  Activation energies of the first step dehydration of TC pentahydrate and the dehydration of TC dihydrate
1 Bayes B, Bonal J, Romero R. Sodium citrate for filling haemodialysis catherters. Nephrology, Dialysis, Transplantation , 1999, 14(10): 2532–2533
doi: 10.1093/ndt/14.10.2532
2 Gao J Y, Xie C, Wang Y L, Xu Z, Hao H X. Solubility data of trisodium citrate hydrates in aqueous solution and crystal-solution interfacial energy of the pentahydrate. Crystal Research and Technology , 2012, 47(4): 397–403
doi: 10.1002/crat.201100546
3 Steiner T, Koellner G. Crystalline p-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. Journal of the American Chemical Society , 1994, 116(12): 5122–5128
doi: 10.1021/ja00091a014
4 Morris R E, Burton A, Bull L M, Zones S I. SSZ-51—A new aluminophosphate zeotype: synthesis, crystal structure, NMR, and dehydration properties. Chemistry of Materials , 2004, 16(15): 2844–2851
doi: 10.1021/cm0353005
5 Boonchom B J, Vittayakorn N. Dehydration behavior of synthetic Al0.5Fe0.5PO4·2.5H2O. Journal of Chemical & Engineering Data , 2010, 55(9): 3307–3311
doi: 10.1021/je100096e
6 Frost R L, Kloprogge J T. Heating stage spectroscopy: infrared, Raman, energy dispersive X-ray and X-ray photoelectron spectroscopy. In: Brown M E, Gallagher P K, eds. Handbook of Thermal Analysis and Calorimetry . Oxford: Elsevier, 2008, 171–173
7 Sestak J. Thermodynamical Properties of Solids. Prague: Academia Publishers, 1984, 1–5
8 Young D. Decomposition of Solids. Oxford: Pergamon Press, 1966, 55–109
9 Arivanandhan M, Huang X M, Uda S, Bhagavannarayana G, Vijayan N, Sankaranarayanan K, Ramasamy P. Directional growth of organic NLO crystal by different growth methods: a comparative study by means of XRD, HRXRD and laser damage threshold. Journal of Crystal Growth , 2008, 310(21): 4587–4592
doi: 10.1016/j.jcrysgro.2008.08.036
10 Duan Y, Li J, Yang X, Hu L, Wang Z, Liu Y, Wang C. Kinetic analysis on the non-isothermal dehydration by integral master-plots method and TG-FTIR study of zinc acetate dihydrate. Journal of Analytical and Applied Pyrolysis , 2008, 83(1): 1–6
doi: 10.1016/j.jaap.2008.05.001
11 Lee S B, Fasina O. Fasina O. TG-FTIR analysis of switchgrass pyrolysis. Journal of Analytical and Applied Pyrolysis , 2009, 86(1): 39–43
doi: 10.1016/j.jaap.2009.04.002
12 dos Santos A V, Matos J R. Dehydration studies of rare earth p-toluenesulfonate hydrates by TG/DTG and DSC. Journal of Alloys and Compounds , 2002, 344(1-2): 195–198
doi: 10.1016/S0925-8388(02)00339-0
13 Yonemochi E, Hoshino T, Yoshihashi Y, Terada K. Evaluation of the physical stability and local crystallization of amorphous terfenadine using XRD-DSC and micro-TA. Thermochimica Acta , 2005, 432(1): 70–75
doi: 10.1016/j.tca.2005.02.023
14 Fischer A, Palladino G. Trisodium citrate dihydrate. Acta Crystallographica. Section E, Structure Reports Online , 2003, 59(11): m1080–m1082
doi: 10.1107/S1600536803024395
15 Voissat B, Rodier N. Crystal structure of sodium citrate hydrate. Bulletin de la Societe Chimique de France , 1986, 4: 522–525
16 Vyazovkin S. Isoconversional kinetics. In: Brown M E, Gallagher P K, eds. Handbook of Thermal Analysis and Calorimetry . Oxford: Elsevier, 2008, 504–506
17 Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan , 1965, 38(11): 1881–1886
doi: 10.1246/bcsj.38.1881
18 Gamlin C D, Dutta N K, Choudhury N R. Evaluation of knietic parameters of thermal and oxidative decomposition of base oils by conventional, isothermal and modulated TGA, and pressure DSC. Thermochim Acta , 2002, 392-393: 357–369
19 Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. International Journal of Chemical Kinetics , 1996, 28(2): 95–101
doi: 10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-G
[1] Tiantian LIU, Yuanyuan RAN, Bochao WANG, Weibing DONG, Songgu WU, Junbo GONG. The dehydration behavior and non-isothermal dehydration kinetics of donepezil hydrochloride monohydrate (Form I)[J]. Front Chem Sci Eng, 2014, 8(1): 55-63.
[2] Lina WU, Xiaoxing SHI, Qun CUI, Haiyan WANG, He HUANG. Effects of the SAPO-11 synthetic process on dehydration of ethanol to ethylene[J]. Front Chem Sci Eng, 2011, 5(1): 60-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed