Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (3) : 369-377    https://doi.org/10.1007/s11705-014-1435-9
RESEARCH ARTICLE
Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts
Zhong HE,Xianqin WANG()
Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
 Download: PDF(1055 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Catalysts Pt/TiO2 and NiMo/Al2O3 are highly active and selective for the hydrodeoxygenation of guaiacol in a fixed bed reactor at 300 °C and 7.1 MPa, leading to the hydrogenation of aromatic ring, followed by demethylation and dehydroxylation to produce cyclohexane. For a complete hydrodeoxygenation of guaiacol, metal sites and acid sites are required. NiMo/Al2O3 and Pt/Al2O3 are more active and selective for cyclohexane formation as compared with Pt/TiO2 at 285 °C and 4 MPa. However, Pt/TiO2 is stable while the other two catalysts deactivate due to the nature and amount of coke formation during the reaction.

Keywords Pt/TiO2      NiMo/Al2O3      Pt/Al2O3      bio-oil      hydrodeoxygenation      guaiacol      cyclohexane     
Corresponding Author(s): Xianqin WANG   
Online First Date: 15 August 2014    Issue Date: 11 October 2014
 Cite this article:   
Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1435-9
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I3/369
Fig.1  (a) H2-TPD profiles of the CoMo/Al2O3, NiMo/Al2O3 and Pt/TiO2 catalysts, (b) NH3-TPD profiles of CoMo/Al2O3, NiMo/Al2O3 and Pt/TiO2
Fig.2  TPR profiles of the CoMo/Al2O3 and NiMo/Al2O3 catalysts
Fig.3  X-ray Diffraction pattern of the Pt/TiO2 catalysts
Fig.4  X-ray Diffraction pattern of the NiMo/Al2O3 catalysts
Fig.5  (a) GUA conversion versus time on steam, (b) Product distribution of the main products from GUA HDO over NiMo/Al2O3, (c) Product distribution of the main products from GUA HDO over Pt/TiO2.
SamplesH/CO/CHDO degree /%
Blank run a1.270.257.4
Pt/TiO2 a2.020.0488.1
NiMo/Al2O3 a2.030.0294.3
Liquid feed (3 wt-%)1.140.29
Gasoline1~2~ 0
Diesel~2~0
Tab.1  H/C and O/C molar ratios of GUA products and HDO degree
Fig.6  Reaction network for cyclohexane formation over Pt/TiO2
Fig.7  Schematic representation of mechanism of the selective HDO of GUA to cyclohexane over Pt/TiO2 catalyst
Fig.8  (a) GUA conversion versus TOS over Pt/Al2O3, Pt/TiO2 and NiMo/Al2O3, (b) Cyclohexane selectivity versus TOS over Pt/Al2O3, Pt/TiO2 and NiMo/Al2O3, (c) TPO profile after reactions over Pt/Al2O3, Pt/TiO2 and NiMo/Al2O3.
1 Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, G?rtner C A, Dumesic J A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 2008, 322(5900): 417–421
2 Furimsky E. Catalytic hydrodeoxygenation. Applied Catalysis A, General, 2000, 199(2): 147–190
3 Zhao C, He J, Lemonidou A A, Li X, Lercher J A. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 2011, 280(1): 8–16
4 Laurent E, Delmon B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalyst. II. Influence of water, ammonia and hydrogen sulfide. Applied Catalysis A, General, 1994, 109(1): 97–115
5 Laurent E, Delmon B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. I. Catalytic reaction schemes. Applied Catalysis A, General, 1994, 109(1): 77–96
6 Bui V N, Laurenti D, Delichère P, Geantet C. Hydrodeoxygenation of guaiacol. Applied Catalysis B: Environmental, 2011, 101(3–4): 246–255
7 Lin Y C, Li C L, Wan H P, Lee H T, Liu C F. Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy & Fuels, 2011, 25(3): 890–896
8 Centeno A, Laurent E, Delmon B. Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules. Journal of Catalysis, 1995, 154(2): 288–298
9 Gutierrez A, Kaila R K, Honkela M L, Slioor R, Krause A O I. Hydrodeoxygenation of guaiacol on noble metal catalysts. Catalysis Today, 2009, 147(3–4): 239–246
10 Jongerius A L, Jastrzebski R, Bruijnincx P C A, Weckhuysen B M. CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: An extended reaction network for the conversion of monomeric and dimeric substrates. Journal of Catalysis, 2012, 285(1): 315–323
11 ?enol O ?, Ryymin E M, Viljava T R, Krause A O I. Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts. Journal of Molecular Catalysis A Chemical, 2007, 277(1–2): 107–112
12 ?enol O ?, Viljava T R, Krause A O I. Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts. Applied Catalysis A, General, 2007, 326(2): 236–244
13 Bridgwater A V. Catalysis in thermal biomass conversion. Applied Catalysis A, General, 1994, 116(1–2): 5–47
14 Zhao H Y, Li D, Bui P, Oyama S T. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Applied Catalysis A, General, 2011, 391(1–2): 305–310
15 González-Borja M A, Resasco D E. Anisole and guaiacol hydrodeoxygenation over monolithic Pt-Sn catalysts. Energy & Fuels, 2011, 25(9): 4155–4162
16 Filley J, Roth C. Vanadium catalyzed guaiacol deoxygenation. Journal of Molecular Catalysis A Chemical, 1999, 139(2–3): 245–252
17 Bykova M V, Bulavchenko O A, Ermakov D Y, Lebedev M Y, Yakovlev V A, Parmon V N. Guaiacol hydrodeoxygenation in the presence of Ni-containing catalysts. Catalysis in Industry, 2011, 3(1): 15–22
18 Ghampson I T, Sepúlveda C, Garcia R, Frederick B G, Wheeler M C, Escalona N, DeSisto W J. Guaiacol transformation over unsupported molybdenum-based nitride catalysts. Applied Catalysis A, General, 2012, 413–414(31): 78–84
19 Bykova M V, Ermakov D Y, Kaichev V V, Bulavchenko O A, Saraev A A, Lebedev M Y, Yakovlev V A. Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study. Applied Catalysis B: Environmental, 2012, 113–114: 296–307
20 He Z, Wang X. Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catalysis for Sustainable Energy, 2012, 1: 28–52
21 He Z, Wang X. Required catalytic properties for alkane production from carboxylic acids: Hydrodeoxygenation of acetic acid. Journal of Energy Chemistry, 2013, 22(6): 883–894
22 Miller J T, Meyers B L, Modica F S, Lane G S, Vaarkamp M, Koningsberger D C. Hydrogen temperature-programmed desorption (H2 TPD) of supported platinum catalysts. Journal of Catalysis, 1993, 143(2): 395–408
23 Lee C R, Yoon J S, Suh Y W, Choi J W, Ha J M, Suh D J, Park Y K. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol. Catalysis Communications, 2012, 17: 54–58
24 Viljava T R, Saari E R M, Krause A O I. Simultaneous hydrodesulfurization and hydrodeoxygenation: Interactions between mercapto and methoxy groups present in the same or in separate molecules. Applied Catalysis A, General, 2001, 209(1–2): 33–43
25 Viljava T R, Komulainen R S, Krause A O I. Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation. Catalysis Today, 2000, 60(1–2): 83–92
26 Hong Y K, Lee D W, Eom H J, Lee K Y. The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol. Applied Catalysis B: Environmental, 2014, 150–151: 438–445
27 Hong D Y, Miller S J, Agrawal P K, Jones C W. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts. Chemical Communications, 2010, 46(7): 1038–1040
28 Sepúlveda C, Leiva K, García R, Radovic L R, Ghampson I T, DeSisto W J, Fierro J L G, Escalona N. Hydrodeoxygenation of 2-methoxyphenol over Mo2N catalysts supported on activated carbons. Catalysis Today, 2011, 172(1): 232–239
29 Zhao C, Kou Y, Lemonidou A A, Li X, Lercher J A. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angewandte Chemie, 2009, 121(22): 4047–4050
30 Shin E J, Keane M A. Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts. Industrial & Engineering Chemistry Research, 2000, 39(4): 883–892
31 Zhu X, Lobban L L, Mallinson R G, Resasco D E. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. Journal of Catalysis, 2011, 281(1): 21–29
32 Zhao C, Lercher J A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angewandte Chemie International Edition, 2012, 51(24): 5935–5940
33 Popov A, Kondratieva E, Goupil J M, Mariey L, Bazin P, Gilson J P, Travert A, Maugé F. Bio-oils hydrodeoxygenation: Adsorption of phenolic molecules on oxidic catalyst supports. Journal of Physical Chemistry C, 2010, 114(37): 15661–15670
34 Pestman R, Koster R M, Pieterse J A Z, Ponec V. Reactions of carboxylic acids on oxides: 1. Selective hydrogenation of acetic acid to acetaldehyde. Journal of Catalysis, 1997, 168(2): 255–264
35 Thibodeau T J, Canney A S, DeSisto W J, Wheeler M C, Amar F G, Frederick B G. Composition of tungsten oxide bronzes active for hydrodeoxygenation. Applied Catalysis A, General, 2010, 388(1–2): 86–95
36 He Z, Yang M, Wang X, Zhao Z, Duan A. Effect of the transition metal oxide supports on hydrogen production from bio-ethanol reforming. Catalysis Today, 2012, 194(1): 2–8
37 Mattos L V, Rodino E, Resasco D E, Passos F B, Noronha F B. Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce-ZrO2 catalysts. Fuel Processing Technology, 2003, 83(1–3): 147–161
38 Mortensen P M, Grunwaldt J D, Jensen P A, Knudsen K G, Jensen A D. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A, General, 2011, 407(1–2): 1–19
39 Yang J, Chen M, Ren J. Effect of Mo, W addition on performance of Ni/Al2O3 catalyst for hydrodeoxygenation. Chemical Industry and Engineering Progress, 2005, 24(12): 1386–1389
40 Bui V N, Laurenti D, Delichère P, Geantet C. Hydrodeoxygenation of guaiacol. Part II: Support effect for CoMoS catalysts on HDO activity and selectivity. Applied Catalysis B: Environmental, 2011, 101(3–4): 246–255
41 Olcese R, Bettahar M M, Malaman B, Ghanbaja J, Tibavizco L, Petitjean D, Dufour A. Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Applied Catalysis B: Environmental, 2013, 129: 528–538
42 Valle B, Casta?o P, Olazar M, Bilbao J, Gayubo A G. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst. Journal of Catalysis, 2012, 285(1): 304–314
43 Ibá?ez M, Valle B, Bilbao J, Gayubo A G, Casta?o P. Effect of operating conditions on the coke nature and HZSM-5 catalysts deactivation in the transformation of crude bio-oil into hydrocarbons. Catalysis Today, 2012, 195(1): 106–113
44 Guo J, Lou H, Zheng X. The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon, 2007, 45(6): 1314–1321
[1] Sainab Omar, Yang Yang, Jiawei Wang. A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids[J]. Front. Chem. Sci. Eng., 2021, 15(1): 4-17.
[2] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[3] Sainab Omar, Suzanne Alsamaq, Yang Yang, Jiawei Wang. Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions[J]. Front. Chem. Sci. Eng., 2019, 13(4): 702-717.
[4] Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan. Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 155-161.
[5] Kuiyi YOU, Fangfang ZHAO, Xueyan LONG, Pingle LIU, Qiuhong AI, Hean LUO. One-step synthesis of ?-caprolactam via the liquid phase catalytic nitrosation of cyclohexane in the presence of concentrated sulfuric acid[J]. Front Chem Sci Eng, 2012, 6(4): 389-394.
[6] Hui LI, Yuanbin SHE, Tao WANG. Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane[J]. Front Chem Sci Eng, 2012, 6(3): 356-368.
[7] Changwei HU, Yu YANG, Jia LUO, Pan PAN, Dongmei TONG, Guiying LI. Recent advances in the catalytic pyrolysis of biomass[J]. Front Chem Sci Eng, 2011, 5(2): 188-193.
[8] Rui LI, Baosheng JIN, Xiangru JIA, Zhaoping ZHONG, Gang XIAO, Xufeng FU. Research on combustion characteristics of bio-oil from sewage sludge[J]. Front Chem Eng Chin, 2009, 3(2): 161-166.
[9] Ruixia ZHANG, Zhaoping ZHONG, Yaji HUANG. Combustion characteristics and kinetics of bio-oil[J]. Front Chem Eng Chin, 2009, 3(2): 119-124.
[10] CHEN Yixia, SHE Yuanbin, XU Jing, LI Yan. Studies on QSAR of metalloporphyrin catalysts in the oxidation of cyclohexane to adipic acid[J]. Front. Chem. Sci. Eng., 2007, 1(2): 155-161.
[11] YU Hancheng, LI Xixian, HUANG Jinwang, JI Liangnian, CHEN Xianli. Synthesis of a new iron (III) porphyrin acrylate-styrene copolymer and its catalysis for hydroxylation of cyclohexane[J]. Front. Chem. Sci. Eng., 2007, 1(1): 65-67.
[12] WANG Shurong, LIU Qian, LUO Zhongyang, CEN Kefa, LIAO Yanfen. Experimental study of the influence of acid wash on cellulose pyrolysis[J]. Front. Chem. Sci. Eng., 2007, 1(1): 35-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed