Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (4) : 522-531    https://doi.org/10.1007/s11705-015-1539-x
RESEARCH ARTICLE
Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis cells
Ze Sun(),Chenglin Liu,Guimin Lu,Xingfu Song,Jianguo Yu
National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(1793 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electric field is the energy foundation of the electrolysis process and the source of the multiphysical fields in a magnesium electrolysis cell. In this study, a three-dimensional numerical model was developed and used to calculate electric field at the steady state through the finite element analysis. Based on the simulation of the electric field, the operational and structural parameters, such as the current intensity, anode thickness, cathode thickness, and anode-cathode distance (ACD), were investigated to obtain the minimum cell voltage. The optimization is to obtain the minimum resistance voltage which has a significant effect on the energy consumption in the magnesium electrolysis process. The results indicate that the effect of the current intensity on the voltage could be ignored and the effect of the ACD is obvious. Moreover, there is a linear decrease between the voltage and the thicknesses of the anode and cathode; and the anode-cathode working height also has a significant effect on the voltage.

Keywords finite element method      magnesium electrolysis cell      electric field     
Corresponding Author(s): Ze Sun   
Online First Date: 06 November 2015    Issue Date: 26 November 2015
 Cite this article:   
Ze Sun,Chenglin Liu,Guimin Lu, et al. Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis cells[J]. Front. Chem. Sci. Eng., 2015, 9(4): 522-531.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1539-x
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I4/522
Direct Cell Anode Cathode ACD
x/m 1.87 0.95 0.95
y/m 2.91 0.15 0.05 0.07
z/m 1.40 1.14 1.05
Tab.1  Main parameters of 120 kA magnesium electrolysis cell [34]
Fig.1  Schematic and computational domains of 120 kA magnesium electrolysis cell
Anode /(Ω·m) Cathode /(Ω·m) Electrolyte /(Ω·m)
7.0 × 10−6 3.15 × 10−7 4.5 × 10−3
Tab.2  Materials resistivity of magnesium electrolysis cell [34]
Fig.2  Electric field contour of the 120 kA magnesium electrolysis cell
Fig.3  The relationship between the current intensity and voltage
Fig.4  The relationship between the anode thickness and voltage
Fig.5  The relationship between the cathode thickness and voltage
Fig.6  The relationship between the ACD and voltage
Fig.7  The relationship between the working height and voltage
Fig.8  The relationship between the working height and voltage drop in different working area
VPotential, V
qCharge density, C·m−3
εDielectric constant, F·m−1
ICurrent, A
RResistance, Ω
ρx, ρy, ρzMaterial resistivities in the x, y, z axial directions, Ω·m
Tab.1  
1 Bluhm  M, Bradley  M, Butterick  R. Amineborane-based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids. Journal of the American Chemical Society, 2006, 128: 7748–7749
2 Cullen  R M. Magnesium electrolysis cell, lining therefor, and method. US Patent 5429722, 1995
3 Brown  R. Magnesium industry growth in the 1990 period. Magnesium Technology, 2000: 3–12
4 Brown  R. Magnesium Industry Review 2006/2007. Light Metals, 2007, 59–62
5 James  W. The evolution of technology for light metals over the last 50 years: Al, Mg, and Li. JOM, 2007, 59: 30–38
6 Subramania  R, Paul  K. A comparison of the greenhouse impacts of magnesium produced by electrolytic and Pidgeon processes. Magnesium Technology, 2004, 173–178
7 Subramania  R, Paul  K. Global warming impact of the magnesium produced in China using the Pidgeon process. Resources, Conservation and Recycling, 2004, 42(1): 49–64
8 Holywell  G. Magnesium: The first quarter millennium. JOM, 2005, 57: 26–33
9 Andreassen  K A, Stiansen  K B. Method for the molten salt electrolytic production of metals from metal chlorides and electrolyzer for carrying out the method. US Patent 3907651, 1975
10 Wallevik  O, Amundsen  K, Faucher  A, Mellerud  T. Magnesium electrolysis—a monopolar viewpoint. The 2000 TMS Annual Meeting. Nashville, TN, USA, 2000, 13–16
11 Rao  G. Electrolytic production of magnesium: Effect of current density. Journal of Applied Electrochemistry, 1986, 16: 775–780
12 Thayer  R, Neelameggham  R. Improving the electrolytic process magnesium production. JOM, 2001, 53: 15–17
13 Güden  M, Karakaya  İ. Electrolysis of MgCl2 with a top inserted anode and an Mg-Pb cathode. Journal of Applied Electrochemistry, 1994, 24: 791–797
14 Demirci  G, Karakaya  I. Collection of magnesium in an Mg-Pb alloy cathode placed at the bottom of the cell in MgCl2 electrolysis. Journal of Alloys and Compounds, 2007, 439: 237–242
15 Demirci  G, Karakaya  I. Electrolytic magnesium production and its hydrodynamics by using an Mg-Pb alloy cathode. Journal of Alloys and Compounds, 2008, 465: 255–260
16 Bos  J, Bouzat  G, Verdiere  C, Feve  J, Rotger  B. Numerical simulation tools to design and optimize smelting technology. The 127th TMS Annual Meeting. San Antonio, TX, USA, 1998, 393–397
17 Tabsh  I, Dupuis  M, Gomes  A. Process simulation of aluminum reduction cells. The 125th TMS Annual Meeting. Anaheim, CA, USA, 1996, 451–457
18 Zhang  M, Meng  F, Geng  Z. CFD simulation on shell-and-tube heat exchangers with small-angle helical baffles. Frontiers of Chemical Science and Engineering, 2015, 9(2): 183–193
19 Ali  S, Arezou  J. Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on heat transfer enhancement. Frontiers of Chemical Science and Engineering, 2014, 8(3): 320–329
20 Widiyastuti  W, Adhi  S, Sugeng  W, Tantular  N, Heru  S. Particle formation of hydroxyapatite precursor containing two components in a spray pyrolysis process. Frontiers of Chemical Science and Engineering, 2014, 8(1): 104–113
21 Sukkee  U, Wang  C, Chen  K. Computational fluid dynamics modeling of proton exchange membrane fuel cells. Journal of the Electrochemical Society, 2000, 147: 4485–4493
22 Jain  P, Biegler  L, Jhon  M. Optimization of polymer electrolyte fuel cell cathodes. Electrochemical and Solid-State Letters, 2008, 11B: 193–196
23 Dupuis  M. Computation of aluminum reduction cell energy balance using  ANSYS  finite  element  models.  LightMetals,  1998, 409–417
24 Cross  M, Pericleous  K, Leboucher  L, Croft  T N, Bojarevics  V, Williams  A. Multi-physics modelling of aluminum reduction cells. Light Metals, 2000, 285–289
25 Richard  D, Goulet  P, Bedard  J, Fafard  M, Dupuis  M. Thermo-electro-mechanical modeling of a Hall-Heroult cell coke-bed preheating. Proceedings of COM, Montreal, Quebec, Canada, 2006, 669–672
26 Severo  D, Schneider  F, Pinto  E, Gusberti  V, Potocnik  V. Modeling magnetohydrodynamics of aluminum electrolysis cells with ANSYS and CFX. Light Metals, 2005, 475–480
27 Scherbinin  S A, Yakovleva  G A, Fazylov  A F. Mathematical model of thermal and electric fields in a magnesium electrolytic cell. Tsvetnaya Metally, 1994, 4: 60–64
28 Shcherbinin  S, Fazylov  A, Yakovleva  G. Mathematical modeling of the three-dimensional temperature and electric fields in a magnesium electrolyzer. Russian Journal of Non-Ferrous Metals, 1997, 38: 74–80
29 Zaikov  Y, Nugumanov  R, Shcherbinin  S. Mathematical modeling of the electrical field in an electrochemical cell containing a vertical gas-generating electrode. Russian Journal of Electrochemistry, 1997, 33: 241–247
30 Liu  C, Sun  Z, Lu  G, Song  X, Ding  Y, Yu  J. Scale-up design of a 300 kA magnesium electrolysis cell based on thermo-electric mathematical models. Canadian Journal of Chemical Engineering, 2014, 92(7): 1197–1206
31 Liu  C, Sun  Z, Lu  G, Song  X, Yu  J. Experimental and numerical investigation of two-phase flow patterns in magnesium electrolysis cell with non-uniform current density distribution. Canadian Journal of Chemical Engineering, 2015, 93(3): 565–579
32 Sun  Z, Liu  C, Lu  G. Coupled thermoelectric model and effects of current fluctuation on thermal balance in magnesium electrolysis cell. Energy & Fuels, 2011, 25: 2655–2663
33 Xu  L, Yu  Y, Li  W, You  Y, Xu  W, Zhang  S. The influence of manufacturing parameters and adding support layer on the properties of Zirfon® separators. Frontiers of Chemical Science and Engineering, 2014, 8(3): 295–305
34 Zhang  Y J. Electrolytic Metallurgy of Magnesium. Changsha: Central South University Publishing, 2006
[1] Dongmei WANG, Guodong JIA, Liang XU, Xiaoyan DONG, Yan SUN. Protein adsorption in two-dimensional electrochromatography packed with superporous and microporous cellulose beads[J]. Front Chem Eng Chin, 2009, 3(3): 229-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed