Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (2) : 143-153    https://doi.org/10.1007/s11705-017-1632-4
REVIEW ARTICLE
A mini review: Shape memory polymers for biomedical applications
Kaojin Wang, Satu Strandman, X. X. Zhu()
Département de Chimie, Université de Montréal, C. P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
 Download: PDF(411 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Shape memory polymers (SMPs) are smart materials that can change their shape in a pre-defined manner under a stimulus. The shape memory functionality has gained considerable interest for biomedical applications, which require materials that are biocompatible and sometimes biodegradable. There is a need for SMPs that are prepared from renewable sources to be used as substitutes for conventional SMPs. In this paper, advances in SMPs based on synthetic monomers and bio-compounds are discussed. Materials designed for biomedical applications are highlighted.

Keywords shape memory polymer      biodegradability      biocompatibility      biomedical application      bile acids     
Corresponding Author(s): X. X. Zhu   
Just Accepted Date: 21 February 2017   Online First Date: 17 April 2017    Issue Date: 12 May 2017
 Cite this article:   
Kaojin Wang,Satu Strandman,X. X. Zhu. A mini review: Shape memory polymers for biomedical applications[J]. Front. Chem. Sci. Eng., 2017, 11(2): 143-153.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1632-4
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I2/143
Fig.1  Basic definitions of SMEs. Top: (a) dual and (b) triple one-way SMEs. Bottom: (c) two-way reversible SMEs
Fig.2  Shape memory-recovery behavior of polyESO/PLLA. Reproduced with permission from Ref. []. Copyright (2014) American Chemical Society
Fig.3  Photographs exhibiting the self-expansion of the stent made from PCL and P(3HB-co-3HV). Reproduced with permission from Ref. []. Copyright (2010) Elsevier Science Ltd.
Fig.4  Triple SME of a strip sample of PCL/PTMEG polymer network. Reproduced with permission from Ref. []. Copyright (2015) American Chemical Society
Fig.5  Two-way reversible SME of cross-linked PEG-PCL block copolymer network. Reproduced with permission from Ref. []. Copyright (2014) The Royal Society of Chemistry
Fig.6  (a) Structure of?bile acid-based copolyester; (b) relative mass loss; and (c) Mn decrease upon degradation; SEM images (d) before and (e) after 5-month degradation of polymer film in PBS at 37 °C. Adapted with permission from Ref. []. Copyright (2008) The Royal Society of Chemistry
Fig.7  (a) Structure of selected bile acid-based polymers and (b) an example of shape recovery behavior. Adapted with permission from Ref. []. Copyright (2009) American Chemical Society
Fig.8  Synthesis of photo-cross-linked cinnamic acid-based terpolymer and its triple shape memory behavior. Reproduced with permission from Ref. []. Copyright (2015) American Chemical Society
Fig.9  The recovery process of triple SMP for removable stent, shapes (b) and (c) were recovered by heating to 40 and 60 °C, respectively, beginning from shape (a). Reprinted with permission from Ref. []. Copyright (2006) National Academy of Sciences, USA
Fig.10  Proposed artificial tendon of two-way reversible SMPs. Reproduced with permission from Ref. []. Copyright (2014) The Royal Society of Chemistry
1 WeiZ G, SandstrorömR, MiyazakiS. Shape-memory materials and hybrid composites for smart systems. Part I Shape-memory materials.Journal of Materials Science, 1998, 33(15): 3743–3762
https://doi.org/10.1023/A:1004692329247
2 FeninatE F, LarocheG, FisetM, MantovaniD. Shape memory materials for biomedical applications.Advanced Engineering Materials, 2002, 4(3): 91–104
https://doi.org/10.1002/1527-2648(200203)4:3<91::AID-ADEM91>3.0.CO;2-B
3 HornbogenE. Comparison of shape memory metals and polymers.Advanced Engineering Materials, 2006, 8(1-2): 101–106
https://doi.org/10.1002/adem.200500193
4 RainerW C, ReddingE M, HitovJ J, SloanA W, StewartW D. US Patent, 3144398(A), 1964-08-11
5 LendleinA, LangerR. Biodegradable, elastic shape-memory polymers for potential biomedical applications.Science, 2002, 296(5573): 1673–1676
https://doi.org/10.1126/science.1066102
6 KratzK, VoigtU, LendleinA. Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies.Advanced Functional Materials, 2012, 22(14): 3057–3065
https://doi.org/10.1002/adfm.201200211
7 Enriquez-SaranoM, SchaffH V, OrszulakT A, TajikA J, BaileyK R, FryeR L. Valve repair improves the outcome of surgery for mitral regurgitation: A multivariate analysis.Circulation, 1995, 91(4): 1022–1028
https://doi.org/10.1161/01.CIR.91.4.1022
8 AlarcónC D H, PennadamS, AlexanderC. Stimuli responsive polymers for biomedical applications.Chemical Society Reviews, 2005, 34(3): 276–285
https://doi.org/10.1039/B406727D
9 SchmaljohannD. Thermo- and pH-responsive polymers in drug delivery.Advanced Drug Delivery Reviews, 2006, 58(15): 1655–1670
https://doi.org/10.1016/j.addr.2006.09.020
10 XueL, DaiS, LiZ. Biodegradable shape-memory block co-polymers for fast self-expandable stents.Biomaterials, 2010, 31(32): 8132–8140
https://doi.org/10.1016/j.biomaterials.2010.07.043
11 YakackiC M, ShandasR, LanningC, RechB, EcksteinA, GallK. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications.Biomaterials, 2007, 28(14): 2255–2263
https://doi.org/10.1016/j.biomaterials.2007.01.030
12 SmallW IV, SinghalP, WilsonT S, MaitlandD J. Biomedical applications of thermally activated shape memory polymers.Journal of Materials Chemistry, 2010, 20(17): 3356–3366
https://doi.org/10.1039/b923717h
13 YahiaL. Shape Memory Polymers for Biomedical Applications. London:Woodhead Publishing, 2015
14 MartinaM, HutmacherD W. Biodegradable polymers applied in tissue engineering research: A review.Polymer International, 2007, 56(2): 145–157
https://doi.org/10.1002/pi.2108
15 TschanM J L, BruleE, HaquetteP, ThomasC M. Synthesis of biodegradable polymers from renewable resources.Polymer Chemistry, 2012, 3(4): 836–851
https://doi.org/10.1039/C2PY00452F
16 ZhengY, LiJ, LeeE, YangS. Light-induced shape recovery of deformed shape memory polymer micropillar arrays with gold nanorods.RSC Advances, 2015, 5(39): 30495–30499
https://doi.org/10.1039/C5RA01469G
17 ZhangH, ZhangJ, TongX, MaD, ZhaoY. Light polarization-controlled shape-memory polymer/gold nanorod composite.Macromolecular Rapid Communications, 2013, 34(19): 1575–1579
https://doi.org/10.1002/marc.201300629
18 ZhangH, XiaH, ZhaoY. Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials.Journal of Materials Chemistry, 2012, 22(3): 845–849
https://doi.org/10.1039/C1JM14615G
19 ZhangH, ZhaoY. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles.ACS Applied Materials & Interfaces, 2013, 5(24): 13069–13075
https://doi.org/10.1021/am404087q
20 WuY, HuJ, ZhangC, HanJ, WangY, KumarB. A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer.Journal of Materials Chemsitry A, 2015, 3(1): 97–100
https://doi.org/10.1039/C4TA04881D
21 WangZ, ZhaoJ, ChenM, YangM, TangL, DangZ M, ChenF, HuangM, DongX. Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites.ACS Applied Materials & Interfaces, 2014, 6(22): 20051–20059
https://doi.org/10.1021/am5056307
22 LuX, FeiG, XiaH, ZhaoY. Ultrasound healable shape memory dynamic polymers.Journal of Materials Chemsitry A, 2014, 2(38): 16051–16060
https://doi.org/10.1039/C4TA02726D
23 LiG, FeiG, LiuB, XiaH, ZhaoY. Shape recovery characteristics for shape memory polymers subjected to high intensity focused ultrasound.RSC Advances, 2014, 4(62): 32701–32709
https://doi.org/10.1039/C4RA04586F
24 LiW, LiuY, LengJ. Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior.RSC Advances, 2014, 4(106): 61847–61854
https://doi.org/10.1039/C4RA10716K
25 DuH, YuY, JiangG, ZhangJ, BaoJ. Microwave-induced shape-memory effect of chemically crosslinked moist poly(vinyl alcohol) networks.Macromolecular Chemistry and Physics, 2011, 212(14): 1460–1468
https://doi.org/10.1002/macp.201100149
26 RazzaqM Y, BehlM, LendleinA. Magnetic memory effect of nanocomposites.Advanced Functional Materials, 2012, 22(1): 184–191
https://doi.org/10.1002/adfm.201101590
27 LendleinA, KelchS. Shape-memory polymers.Angewandte Chemie International Edition, 2002, 41(12): 2034–2057
https://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
28 LiuC, QinH, MatherP T. Review of progress in shape-memory polymers.Journal of Materials Chemistry, 2007, 17(16): 1543–1558
https://doi.org/10.1039/b615954k
29 XieT. Recent advances in polymer shape memory.Polymer, 2011, 52(22): 4985–5000
https://doi.org/10.1016/j.polymer.2011.08.003
30 HuJ, ZhuY, HuangH, LuJ. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications.Progress in Polymer Science, 2012, 37(12): 1720–1763
https://doi.org/10.1016/j.progpolymsci.2012.06.001
31 BergG J, McBrideM K, WangC, BowmanC N. New directions in the chemistry of shape memory polymers.Polymer, 2014, 55(23): 5849–5872
https://doi.org/10.1016/j.polymer.2014.07.052
32 HagerM D, BodeS, WeberC, SchubertU S. Shape memory polymers: Past, present and future developments.Progress in Polymer Science, 2015, 49-50: 3–33
https://doi.org/10.1016/j.progpolymsci.2015.04.002
33 ZhaoQ, QiH J, XieT. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding.Progress in Polymer Science, 2015, 49-50: 79–120
https://doi.org/10.1016/j.progpolymsci.2015.04.001
34 RatnaD, Karger-KocsisJ. Recent advances in shape memory polymers and composites: A review.Journal of Materials Science, 2008, 43(1): 254–269
https://doi.org/10.1007/s10853-007-2176-7
35 LiuY, LvH, LanX, LengJ, DuS. Review of electro-active shape-memory polymer composite.Composites Science and Technology, 2009, 69(13): 2064–2068
https://doi.org/10.1016/j.compscitech.2008.08.016
36 LengJ, LanX, LiuY, DuS. Shape-memory polymers and their composites: Stimulus methods and applications.Progress in Materials Science, 2011, 56(7): 1077–1135
https://doi.org/10.1016/j.pmatsci.2011.03.001
37 HuangW M, YangB, ZhaoY, DingZ. Thermo-moisture responsive polyurethane shape-memory polymer and composites: A review.Journal of Materials Chemistry, 2010, 20(17): 3367–3381
https://doi.org/10.1039/b922943d
38 MengH, LiG. A review of stimuli-responsive shape memory polymer composites.Polymer, 2013, 54(9): 2199–2221
https://doi.org/10.1016/j.polymer.2013.02.023
39 BehlM, LendleinA. Triple-shape polymers.Journal of Materials Chemistry, 2010, 20(17): 3335–3345
https://doi.org/10.1039/b922992b
40 KumarK S S, BijuR, NairC P R. Progress in shape memory epoxy resins.Reactive & Functional Polymers, 2013, 73(2): 421–430
https://doi.org/10.1016/j.reactfunctpolym.2012.06.009
41 ZhaoQ, BehlM, LendleinA. Shape-memory polymers with multiple transitions: Complex actively moving polymers.Soft Matter, 2013, 9(6): 1744–1755
https://doi.org/10.1039/C2SM27077C
42 HuJ, ChenS. A review of actively moving polymers in textile applications.Journal of Materials Chemistry, 2010, 20(17): 3346–3355
https://doi.org/10.1039/b922872a
43 LiuY, DuH, LiuL, LengJ. Shape memory polymers and their composites in aerospace applications: A review.Smart Materials and Structures, 2014, 23(2): 023001
https://doi.org/10.1088/0964-1726/23/2/023001
44 SerranoM C, AmeerG A. Recent insights into the biomedical applications of shape-memory polymers.Macromolecular Bioscience, 2012, 12(9): 1156–1171
https://doi.org/10.1002/mabi.201200097
45 LendleinA, BehlM, HieblB, WischkeC. Shape-memory polymers as a technology platform for biomedical applications.Expert Review of Medical Devices, 2010, 7(3): 357–379
https://doi.org/10.1586/erd.10.8
46 ChanB Q Y, LowZ W K, HengS J W, ChanS Y, OwhC, LohX J. Recent advances in shape memory soft materials for biomedical applications.ACS Applied Materials & Interfaces, 2016, 8(16): 10070–10087
https://doi.org/10.1021/acsami.6b01295
47 ZhangR, WangY, WangK, ZhengG, LiQ, ShenC. Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent.Polymer Bulletin, 2013, 70(1): 195–206
https://doi.org/10.1007/s00289-012-0814-y
48 SainiP, AroraM, KumarM N V R. Poly(lactic acid) blends in biomedical applications.Advanced Drug Delivery Reviews, 2016, 107: 47–59
https://doi.org/10.1016/j.addr.2016.06.014
49 ShasteenC, ChoyY B. Controlling degradation rate of poly(lactic acid) for its biomedical applications.Biomedical Engineering Letters, 2011, 1(3): 163–167
https://doi.org/10.1007/s13534-011-0025-8
50 LuX, CaiW, ZhaoL C. Study on the shape memory behavior of poly(L-lactide).Materials Science Forum, 2005, 475-479: 2399–2402
https://doi.org/10.4028/www.scientific.net/MSF.475-479.2399
51 ZhengX, ZhouS, LiX, WengJ. Shape memory properties of poly((D,L-lactide)/hydroxyapatite composites.Biomaterials, 2006, 27(24): 4288–4295
https://doi.org/10.1016/j.biomaterials.2006.03.043
52 MengQ, HuJ, HoK, JiF, ChenS. The shape memory properties of biodegradable chitosan/poly(L-lactide) composites.Journal of Polymers and the Environment, 2009, 17(3): 212–224
https://doi.org/10.1007/s10924-009-0141-z
53 FilionT M, XuJ, PrasadM L, SongJ. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites.Biomaterials, 2011, 32(4): 985–991
https://doi.org/10.1016/j.biomaterials.2010.10.012
54 LiangJ Z, DuanD R, TangC Y, TsuiC P, ChenD Z. Flexural properties of poly-L-lactide and polycaprolactone shape memory composites filled with nanometer calcium carbonate.Journal of Macromolecular Science, Part B: Physics, 2013, 52(7): 964–972
https://doi.org/10.1080/00222348.2012.746572
55 KutikovA B, ReyerK A, SongJ. Shape memory performance of thermoplastic amphiphilic triblock copolymer poly(D, L-lactic acid-co-ethylene glycol-co-D, L-lactic acid) (PELA)/hydroxyapatite composites.Macromolecular Chemistry and Physics, 2014, 215(24): 2482–2490
https://doi.org/10.1002/macp.201400340
56 RuanC, WangY, ZhangM, LuoY, FuC, HuangM, SunJ, HuC. Design, synthesis and characterization of novel biodegradable shape memory polymers based on poly(D, L-lactic acid) diol, hexamethylene diisocyanate and piperazine.Polymer International, 2012, 61(4): 524–530
https://doi.org/10.1002/pi.3197
57 RadjabianM, KishM H, MohammadiN. Structure-property relationship for poly(lactic acid) (PLA) filaments: Physical, thermomechanical and shape memory characterization.Journal of Polymer Research, 2012, 19(6): 9870
https://doi.org/10.1007/s10965-012-9870-0
58 ChangR, HuangY, ShanG, BaoY, YunX, DongT, PanP. Alternating poly(lactic acid)/poly(ethylene-co-butylene) supramolecular multiblock copolymers with tunable shape memory and self-healing properties.Polymer Chemistry, 2015, 6(32): 5899–5910
https://doi.org/10.1039/C5PY00742A
59 LaiS M, WuW L, WangY J. Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends.Journal of Polymer Research, 2016, 23(5): 99
https://doi.org/10.1007/s10965-016-0993-6
60 ShenT, LuM, ZhouD, LiangL. Influence of blocked polyisocyanate on thermomechanical, shape memory and biodegradable properties of poly(lactic acid)/poly(ethylene glycol) blends.Iranian Polymer Journal, 2012, 21(5): 317–323
https://doi.org/10.1007/s13726-012-0031-4
61 JingX, MiH Y, PengX F, TurngL S. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends.Polymer Engineering and Science, 2015, 55(1): 70–80
https://doi.org/10.1002/pen.23873
62 YuanD, ChenZ, XuC, ChenK, ChenY. Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization.ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2856–2865
https://doi.org/10.1021/acssuschemeng.5b00788
63 TsujimotoT, UyamaH. Full Biobased polymeric material from plant oil and poly(lactic acid) with a shape memory property.ACS Sustainable Chemistry & Engineering, 2014, 2(8): 2057–2062
https://doi.org/10.1021/sc500310s
64 LaiS M, LanY C. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends.Journal of Polymer Research, 2013, 20(5): 140
https://doi.org/10.1007/s10965-013-0140-6
65 RajaM, RyuS H, ShanmugharajA M. Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites.European Polymer Journal, 2013, 49(11): 3492–3500
https://doi.org/10.1016/j.eurpolymj.2013.08.009
66 WangW, PingP, ChenX, JingX. Polylactide-based polyurethane and its shape-memory behavior.European Polymer Journal, 2006, 42(6): 1240–1249
https://doi.org/10.1016/j.eurpolymj.2005.11.029
67 UleryB D, NairL S, LaurencinC T. Biomedical applications of biodegradable polymers.Journal of Polymer Science. Part B, Polymer Physics, 2011, 49(12): 832–864
https://doi.org/10.1002/polb.22259
68 WoodruffM A, HutmacherD W. The return of a forgotten polymer-polycaprolactone in the 21st century.Progress in Polymer Science, 2010, 35(10): 1217–1256
https://doi.org/10.1016/j.progpolymsci.2010.04.002
69 DarneyP D, MonroeS E, KlaisleC M, AlvaradoA. Clinical evaluation of the Capronor contraceptive implant: Preliminary report.American Journal of Obstetrics and Gynecology, 1989, 160(5): 1292–1295
https://doi.org/10.1016/S0002-9378(89)80015-8
70 NöChelU, ReddyC S, UttamchandN K, KratzK, BehlM, LendleinA. Shape-memory properties of hydrogels having a poly(ε-caprolactone) crosslinker and switching segment in an aqueous environment.European Polymer Journal, 2013, 49(9): 2457–2466
https://doi.org/10.1016/j.eurpolymj.2013.01.022
71 ChenW C, LaiS M, ChangM Y, LiaoZ C. Preparation and properties of natural rubber (NR)/polycaprolactone (PCL) bio-based shape memory polymer blends.Journal of Macromolecular Science, Part B: Physics, 2014, 53(4): 645–661
https://doi.org/10.1080/00222348.2013.860304
72 MyaK Y, GoseH B, PretschT, BotheM, HeC B. Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance.Journal of Materials Chemistry, 2011, 21(13): 4827–4836
https://doi.org/10.1039/c0jm04459h
73 WengS, XiaZ, ChenJ, GongL. Shape memory properties of polycaprolactone-based polyurethanes prepared by reactive extrusion.Journal of Applied Polymer Science, 2013, 127(1): 748–759
https://doi.org/10.1002/app.37768
74 KashifM, YunB, LeeK S, ChangY W. Biodegradable shape-memory poly(ε-caprolactone)/polyhedral oligomeric silsequioxane nanocomposites: Sustained drug release and hydrolytic degradation.Materials Letters, 2016, 166: 125–128
https://doi.org/10.1016/j.matlet.2015.12.051
75 WangW, LiuD, LuL, ChenH, GongT, LvJ, ZhouS. The improvement of the shape memory function of poly(ε-caprolactone)/nano-crystalline cellulose nanocomposites via recrystallization under a high-pressure environment.Journal Materials Chemsitry A, 2016, 4(16): 5984–5992
https://doi.org/10.1039/C6TA00930A
76 WangL, YangX, ChenH, GongT, LiW, YangG, ZhouS. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups.ACS Applied Materials & Interfaces, 2013, 5(21): 10520–10528
https://doi.org/10.1021/am402091m
77 WeiM, ZhanM, YuD, XieH, HeM, YangK, WangY. Novel poly(tetramethylene ether)glycol and poly(ε-caprolactone) based dynamic network via quadruple hydrogen bonding with triple-shape effect and self-healing capacity.ACS Applied Materials & Interfaces, 2015, 7(4): 2585–2596
https://doi.org/10.1021/am507575z
78 XiaoL, WeiM, ZhanM, ZhangJ, XieH, DengX, YangK, WangY. Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding.Polymer Chemistry, 2014, 5(7): 2231–2241
https://doi.org/10.1039/c3py01476b
79 BaiY, JiangC, WangQ, WangT. Multi-shape-memory property study of novel poly(ε-caprolactone)/ethyl cellulose polymer networks.Macromolecular Chemistry and Physics, 2013, 214(21): 2465–2472
https://doi.org/10.1002/macp.201300389
80 LeeK M, KnightP T, ChungT, MatherP T. Polycaprolactone-POSS chemical/physical double networks.Macromolecules, 2008, 41(13): 4730–4738
https://doi.org/10.1021/ma800586b
81 HongS J, YuW R, YoukJ H. Two-way shape memory behavior of shape memory polyurethanes with a bias load.Smart Materials and Structures, 2010, 19(3): 035022
https://doi.org/10.1088/0964-1726/19/3/035022
82 BakerR M, HendersonJ H, MatherP T. Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation.Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2013, 1(38): 4916
https://doi.org/10.1039/c3tb20810a
83 HuangM, DongX, WangL, ZhaoJ, LiuG, WangD. Two-way shape memory property and its structural origin of cross-linked poly(ε-caprolactone).RSC Advances, 2014, 4(98): 55483–55494
https://doi.org/10.1039/C4RA09385B
84 PandiniS, BaldiF, PaderniK, MessoriM, ToselliM, PilatiF, GianoncelliA, BrisottoM, BontempiE, RiccòT. One-way and two-way shape memory behaviour of semi-crystalline networks based on sol-gel cross-linked poly(ε-caprolactone).Polymer, 2013, 54(16): 4253–4265
https://doi.org/10.1016/j.polymer.2013.06.016
85 PandiniS, PasseraS, MessoriM, PaderniK, ToselliM, GianoncelliA, BontempiE, RiccòT. Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone).Polymer, 2012, 53(9): 1915–1924
https://doi.org/10.1016/j.polymer.2012.02.053
86 RaquezJ M, VanderstappenS, MeyerF, VergeP, AlexandreM, ThomassinJ M, JeromeC, DuboisP. Design of cross-linked semicrystalline poly(ε-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels-Alder reactions.Chemistry, 2011, 17(36): 10135–10143
https://doi.org/10.1002/chem.201100496
87 BaiY, ZhangX, WangQ, WangT. A tough shape memory polymer with triple-shape memory and two-way shape memory properties.Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(13): 4771–4778
https://doi.org/10.1039/c3ta15117d
88 ZotzmannJ, BehlM, HofmannD, LendleinA. Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(ε-caprolactone)-segments.Advanced Materials, 2010, 22(31): 3424–3429
https://doi.org/10.1002/adma.200904202
89 BehlM, KratzK, ZotzmannJ, NochelU, LendleinA. Reversible bidirectional shape-memory polymers.Advanced Materials, 2013, 25(32): 4466–4469
https://doi.org/10.1002/adma.201300880
90 WuY, HuJ, HanJ, ZhuY, HuangH, LiJ, TangB. Two-way shape memory polymer with “switch-spring” composition by interpenetrating polymer network.Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(44): 18816–18822
https://doi.org/10.1039/C4TA03640A
91 GongT, ZhaoK, WangW, ChenH, WangL, ZhouS. Thermally activated reversible shape switch of polymer particles.Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(39): 6855–6866
https://doi.org/10.1039/C4TB01155D
92 GautrotJ E, ZhuX X. Biodegradable polymers based on bile acids and potential biomedical applications.Journal of Biomaterials Science. Polymer Edition, 2006, 17(10): 1123–1139
https://doi.org/10.1163/156856206778530713
93 GautrotJ E, ZhuX X. Main-chain bile acid based degradable elastomers synthesized by entropy-driven ring-opening metathesis polymerization.Angewandte Chemie International Edition, 2006, 45(41): 6872–6874
https://doi.org/10.1002/anie.200602096
94 GautrotJ E, ZhuX X. Macrocyclic bile acids: From molecular recognition to degradable biomaterial building blocks.Journal of Materials Chemistry, 2009, 19(32): 5705
https://doi.org/10.1039/b821340b
95 JiaY G, ZhuX X. Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants.Chemistry of Materials, 2015, 27(1): 387–393
https://doi.org/10.1021/cm5041584
96 GautrotJ E, ZhuX X. High molecular weight bile acid and ricinoleic acid-based copolyesters via entropy-driven ring-opening metathesis polymerisation.Chemical Communications, 2008, (14): 1674–1676
https://doi.org/10.1039/b719021b
97 GautrotJ E, ZhuX X. Shape memory polymers based on naturally-occurring bile acids.Macromolecules, 2009, 42(19): 7324–7331
https://doi.org/10.1021/ma901090r
98 Thérien-AubinH, GautrotJ E, ShaoY, ZhangJ, ZhuX X. Shape memory properties of main chain bile acids polymers.Polymer, 2010, 51(1): 22–25
https://doi.org/10.1016/j.polymer.2009.11.027
99 StrandmanS, TsaiI H, LortieR, ZhuX X. Ring-opening polymerization of bile acid macrocycles by Candida antarctica lipase B.Polymer Chemistry, 2013, 4(16): 4312–4316
https://doi.org/10.1039/c3py00651d
100 ShaoY, LavigueurC, ZhuX X. Multishape memory effect of norbornene-based copolymers with cholic acid pendant groups.Macromolecules, 2012, 45(4): 1924–1930
https://doi.org/10.1021/ma202506b
101 WangK, JiaY G, ZhuX X. Biocompound-based multiple shape memory polymers reinforced by photo-cross-linking.ACS Biomaterials Science & Engineering, 2015, 1(9): 855–863
https://doi.org/10.1021/acsbiomaterials.5b00226
102 SerranoM C, CarbajalL, AmeerG A. Novel biodegradable shape-memory elastomers with drug-releasing capabilities.Advanced Materials, 2011, 23(19): 2211–2215
https://doi.org/10.1002/adma.201004566
103 YangC S, WuH C, SunJ S, HsiaoH M, WangT W. Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent.ACS Applied Materials & Interfaces, 2013, 5(21): 10985–10994
https://doi.org/10.1021/am4032295
104 ZhangH, WangH, ZhongW, DuQ. A novel type of shape memory polymer blend and the shape memory mechanism.Polymer, 2009, 50(6): 1596–1601
https://doi.org/10.1016/j.polymer.2009.01.011
105 ChenM C, TsaiH W, ChangY, LaiW Y, MiF L, LiuC T, WongH S, SungH W. Rapidly self-expandable polymeric stents with a shape-memory property.Biomacromolecules, 2007, 8(9): 2774–2780
https://doi.org/10.1021/bm7004615
106 SmallW L V, WilsonT S, BenettW J, LogeJ M, MaitlandD J. Laser-activated shape memory polymer intravascular thrombectomy device.Optics Express, 2005, 13(20): 8204–8213
https://doi.org/10.1364/OPEX.13.008204
107 BellinI, KelchS, LangerR, LendleinA. Polymeric triple-shape materials.Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(48): 18043–18047
https://doi.org/10.1073/pnas.0608586103
108 GongT, ZhaoK, LiuX, LuL, LiuD, ZhouS. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization.Small, 2016, 12(41): 5769–5778
https://doi.org/10.1002/smll.201601503
109 KabirM H, HazamaT, WatanabeY, GongJ, MuraseK, SunadaT, FurukawaH. Smart hydrogel with shape memory for biomedical applications.Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(6): 3134–3138
https://doi.org/10.1016/j.jtice.2014.09.035
[1] Ana Mora-Boza, Francisco J. Aparicio, María Alcaire, Carmen López-Santos, Juan P. Espinós, Daniel Torres-Lagares, Ana Borrás, Angel Barranco. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition[J]. Front. Chem. Sci. Eng., 2019, 13(2): 330-339.
[2] Merve İzmir, Batur Ercan. Anodization of titanium alloys for orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 28-45.
[3] Jiaojiao Shang, Guo Yao, Ronghui Guo, Wei Zheng, Long Gu, Jianwu Lan. Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol[J]. Front. Chem. Sci. Eng., 2018, 12(3): 457-466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed