Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 516-520    https://doi.org/10.1007/s11705-017-1658-7
VIEWS & COMMENTS
Oral product input to the GI tract: GIS an oral product performance technology
Gordon L. Amidon(), Yasuhiro Tsume
College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
 Download: PDF(155 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The patient receives a pharmaceutical product, not a drug. The pharmaceutical products are formulated with a drug, an active ingredient to produce the maximum therapeutic effect after oral absorption. Therefore, it is the product we must optimize for the patients. In order to assure the safety and efficacy of pharmaceutical products, we need an in vivo predictive tool for oral product performance in patients. Currently, we are a surprisingly long way from accomplishing that objective. If the 20th century was the ‘age of the drug’, i.e., the ‘magic bullet’, the 21st century must become the ‘age of the guided missile’, i.e., the delivery system, including the form of the active pharmaceutical ingredient (API) (‘drug’). The physical form of the drug and the delivery system must be optimized to maximize the therapeutic benefits of pharmaceutical products for humans. Oral immediate release (IR) dosage forms cannot be optimal for all drugs or likely even any drugs (APIs). Still, the formulation of pharmaceutical products has to be optimized for patients. But how do we optimize oral delivery of drugs? It is usually through ‘trial and error’, in humans! We need a better way to optimize the oral dosage forms. We have suggested to select different dissolution methodologies for this optimization based on BCS Subclasses. In this article, we present the predicted in vivo drug dissolution profile of ketoconazole as a model drug from our laboratory utilizing a gastrointestinal simulator (GIS), which is an adaptation of the ASD system. GIS consists of three chambers representing stomach, duodenum, and jejunum, to create the human gastrointestinal tract-like environment and enable the control the gastric emptying rate. This dissolution system allows the monitoring of the drug dissolution phenomena and the observation of the supersaturation and the precipitation of pharmaceutical products, which is useful information to predict in vivo dissolution of pharmaceutical products. This system can provide the actual input needed to accurately predict the input into the systemic circulation required by many of the absorption prediction packages available today.

Keywords GIS      in vivo predictive dissolution      ketoconazole      BCS subclassification      supersaturation     
Corresponding Author(s): Gordon L. Amidon   
Just Accepted Date: 10 May 2017   Online First Date: 28 July 2017    Issue Date: 06 November 2017
 Cite this article:   
Gordon L. Amidon,Yasuhiro Tsume. Oral product input to the GI tract: GIS an oral product performance technology[J]. Front. Chem. Sci. Eng., 2017, 11(4): 516-520.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1658-7
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/516
Fig.1  The diagram of GIS
Fig.2  Drug concentration-time profiles of ketoconazole in the (A) gastric, (B) duodenal, and (C) jejunal chambers in GIS. Circles represent observed drug concentration and black lines indicate the theoretical concentration curves. Each data point represents mean±SD (n = 4)
Fig.3  Drug% dissolved-time profiles of a tablet of 200 mg ketoconazole in the sum of duodenal and jejunal chambers in the GIS, 50 mL of 102 N HCl (pH 2.0) with 250 mL of water, and 300 mL of 50 mmol/L phosphate buffer (pH 6.5). and the USP apparatus II at pH 6.5 50 mmol/L phosphate buffer (pH 6.5). Black and red circles are representing the dissolution profiles of ketoconazole in the GIS and USP II, respectively. Dots represent the mean of observed values and lines represent the calculated non-linear curves fitting on the observed values. Each data point represents mean±SD (n = 4)
Ketoconazole
MW531.4
Dose /mg200
Dose number158
Dose volume /mL250
Solubility /(mg·mL1)0.01 (pH 6.5)
logP4.3
pKa2.94, 6.51
Mean precipitation time /s900
Human Peff /(× 104 cm2/s)4.94
Body weight /kg70
Vc /(L·kg−-1)0.4
Total clearance /(L·h1·kg1)0.12
Tab.1  Chemical/physiological/pharmacological parameters of ketoconazole for GastroPlusTMsimulation
Fig.4  Average plasma ketoconazole concentrations after 200 mg orally in normal subjects. Each data point represents mean. Clinical data was extracted from Huang YC [13]
1 Tsume Y, Mudie D M, Langguth P, Amidon G E, Amidon G L. The Biopharmaceutics classification system: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. European Journal of Pharmaceutical Sciences, 2014, 57: 152–163
https://doi.org/10.1016/j.ejps.2014.01.009
2 Bhattachar S N, Perkins E J, Tan J S, Burns L J. Effect of gastric pH on the pharmacokinetics of a BCS class II compound in dogs: Utilization of an artificial stomach and duodenum dissolution model and GastroPlus, simulations to predict absorption. Journal of Pharmaceutical Sciences, 2011, 100(11): 4756–4765
https://doi.org/10.1002/jps.22669
3 Carino S R, Sperry D C, Hawley M. Relative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum model. Journal of Pharmaceutical Sciences, 2006, 95(1): 116–125
https://doi.org/10.1002/jps.20495
4 Carino S R, Sperry D C, Hawley M. Relative bioavailability of three different solid forms of PNU-141659 as determined with the artificial stomach-duodenum model. Journal of Pharmaceutical Sciences, 2010, 99(9): 3923–3930
https://doi.org/10.1002/jps.22236
5 Castela-Papin N, Cai S, Vatier J, Keller F, Souleau C H, Farinotti R. Drug interactions with diosmectite: A study using the artificial stomach-duodenum model. International Journal of Pharmaceutics, 1999, 182(1): 111–119
https://doi.org/10.1016/S0378-5173(99)00073-3
6 Matsui K, Tsume Y, Amidon G E, Amidon G L. In vivo dissolution of fluconazole and dipyridamole in gastrointestinal simulator (GIS), predicting in vivo dissolution and drug-drug interaction caused by acid-reducing agents. Molecular Pharmaceutics, 2015, 12(7): 2418–2428
https://doi.org/10.1021/acs.molpharmaceut.5b00135
7 Matsui K, Tsume Y, Amidon G E, Amidon G L. The evaluation of in vitro drug dissolution of commercially available oral dosage forms for itraconazole in gastrointestinal simulator with biorelevant media. Journal of Pharmaceutical Sciences, 2016, 105(9): 2804–2814
https://doi.org/10.1016/j.xphs.2016.02.020
8 Mudie D M, Shi Y, Ping H, Gao P, Amidon G L, Amidon G E. Mechanistic analysis of solute transport in an in vitro physiological two-phase dissolution apparatus. Biopharmaceutics & Drug Disposition, 2012, 33(7): 378–402
https://doi.org/10.1002/bdd.1803
9 Polster C S, Atassi F, Wu S J, Sperry D C. Use of artificial stomach-duodenum model for investigation of dosing fluid effect on clinical trial variability. Molecular Pharmaceutics, 2010, 7(5): 1533–1538
https://doi.org/10.1021/mp100116g
10 Takeuchi S, Tsume Y, Amidon G E, Amidon G L. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in vivo dissolution. Journal of Pharmaceutical Sciences, 2014, 103(11): 3416–3422
https://doi.org/10.1002/jps.24112
11 Tsume Y, Takeuchi S, Matsui K, Amidon G E, Amidon G L. In vivo dissolution methodology, mini-gastrointestinal simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib. European Journal of Pharmaceutical Sciences, 2015, 76: 203–212
https://doi.org/10.1016/j.ejps.2015.05.013
12 Vatier J, Malikova-Sekera E, Vitre M T, Mignon M. An artificial stomach-duodenum model for the in-vitroevaluation of antacids. Alimentary Pharmacology & Therapeutics, 1992, 6(4): 447–458
https://doi.org/10.1111/j.1365-2036.1992.tb00558.x
13 Huang Y C, Colaizzi J L, Bierman R H, Woestenborghs R, Heykants J. Pharmacokinetics and dose proportionality of ketoconazole in normal volunteers. Antimicrobial Agents and Chemotherapy, 1986, 30(2): 206–210
https://doi.org/10.1128/AAC.30.2.206
14 Van Tyle J H. Ketoconazole. Mechanism of action, spectrum of activity, pharmacokinetics, drug interactions, adverse reactions and therapeutic use. Pharmacotherapy, 1984, 4(6): 343–373
https://doi.org/10.1002/j.1875-9114.1984.tb03398.x
[1] Yueqing Wang, Jintao Zhang. Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(4): 838-854.
[2] Sunhui Chen,Qiuling Liang,Shuping Xie,Ergang Liu,Zhili Yu,Lu Sun,Meong Cheol Shin,Seung Jin Lee,Huining He,Victor C. Yang. Curcumin based combination therapy for anti-breast cancer: from in vitro drug screening to in vivo efficacy evaluation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 383-388.
[3] Ali SALEEMI, I.I. ONYEMELUKWE, Zoltan NAGY. Effects of a structurally related substance on the crystallization of paracetamol[J]. Front Chem Sci Eng, 2013, 7(1): 79-87.
[4] Gongsheng LI, Xuhong GUO, Wang NA, Diancheng HAO, Mingyao ZHANG, Huixuan ZHANG, Jun XU. Performance and synergistic effect of phenolic and thio antioxidants in ABS graft copolymers[J]. Front Chem Sci Eng, 2011, 5(1): 26-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed