Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (1) : 79-87    https://doi.org/10.1007/s11705-013-1308-7
RESEARCH ARTICLE
Effects of a structurally related substance on the crystallization of paracetamol
Ali SALEEMI1, I.I. ONYEMELUKWE1, Zoltan NAGY1,2()
1. Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK; 2. School of Chemical Engineering, Purdue University, West Lafayette, Ind. 47907, USA
 Download: PDF(653 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Paracetamol (PCM) was crystallized from an isopropanol (IPA) solution containing various small amounts of metacetamol as an additive. The effect on the nucleation kinetics was studied by measuring the induction time to nucleation and the metastable zone width using focused beam reflectance measurements (FBRM) and attenuated total reflectance (ATR-UV/Vis) spectroscopy. Both the induction time and the metastable zone width were expressed as functions of the additive concentration. Small amounts of metacetamol (1–4 mol-%) were found to cause significant inhibition to the nucleation by extending both the induction time and the metastable zone width. A progressive change in the morphology of the paracetamol crystals from tabular to columnar habit was observed with increasing metacetamol concentration. The solvent also had a significant effect on the size of the paracetamol crystals as smaller crystals were obtained in IPA than in aqueous solution. The dissolution rate of paracetamol was improved by the incorporation of metacetamol with 4 mol-% having the most effect. A supersaturation control (SSC) approach was implemented for the PCM-IPA system with and without metacetamol in an attempt to control and obtain larger metacetamol-doped paracetamol crystals.

Keywords acetaminophen      metacetamol      crystallization      metastable zone width      induction time      supersaturation control     
Corresponding Author(s): NAGY Zoltan,Email:zknagy@purdue.edu   
Issue Date: 05 March 2013
 Cite this article:   
Ali SALEEMI,I.I. ONYEMELUKWE,Zoltan NAGY. Effects of a structurally related substance on the crystallization of paracetamol[J]. Front Chem Sci Eng, 2013, 7(1): 79-87.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1308-7
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I1/79
1 Mullin J W. Industrial Crystallisation. London: Butterworths, 1993, 277-278
2 Klug D L. The influence of impurities and solvents on crystallisation. In: Myerson A, ed. Handbook of Industrial Crystallisation. New York: Butterworths, 1993, 65-87
3 Weissbuch I, Leiserowitz L, Lahav M. Tailor-made additives and impurities. In: Mersmann A, ed. Crystallisation Technology Handbook . New York: Marcel Dekker, 1995, 401-457
4 Prasad K V R, Ristic R I, Sheen D B, Sherwood J N. Crystallization of paracetamol from solution in the presence and absence of impurity. International Journal of Pharmaceutics , 2001, 215(1-2): 29-44
doi: 10.1016/S0378-5173(00)00653-0
5 Thompson C, Davies M C, Roberts C J, Tendler S J B, Wilkinson M J. The effects of additives on the growth and morphology of paracetamol (acetaminophen) crystals. International Journal of Pharmaceutics , 2004, 280(1-2): 137-150
doi: 10.1016/j.ijpharm.2004.05.010
6 Hendriksen B A, Grant D J W. The effect of structurally related substances on the nucleation kinetics of paracetamol (acetaminophen). Journal of Crystal Growth , 1995, 156(3): 252-260
doi: 10.1016/0022-0248(95)00301-0
7 Hendriksen B A, Grant D J W, Meenan P, Green D A. Crystallisation of paracetamol (acetaminophen) in the presence of structurally related substances. Journal of Crystal Growth , 1998, 183(4): 629-640
doi: 10.1016/S0022-0248(97)00488-0
8 Prasad K V R, Ristic R I, Sheen D B, Sherwood J N. Dissolution kinetics of paracetamol single crystals. International Journal of Pharmaceutics , 2002, 238(1-2): 29-41
doi: 10.1016/S0378-5173(02)00053-4
9 Chow A H L, Chow P K K, Zhongshan W, Grant D J W. Modification of acetaminophen crystals: influence of growth in aqueous solutions containing p-acetoxyacetanilide on crystal properties. International Journal of Pharmaceutics , 1985, 24(2-3): 239-258
doi: 10.1016/0378-5173(85)90024-9
10 Femi-Oyewo M N, Spring M S. Studies on paracetamol crystals produced by growth in aqueous solutions. International Journal of Pharmaceutics , 1994, 112(1): 17-28
doi: 10.1016/0378-5173(94)90257-7
11 Shekunov B Y, Grant D J W. In situ optical interferometric studies of the growth and dissolution behavior of paracetamol (acetaminophen). 1. Growth kinetics. Journal of Physical Chemistry B , 1997, 101(20): 3973-3979
doi: 10.1021/jp9639298
12 Becker R, D?ring W. Kinetische Behandlung der Keimbildung in übers?ttigten D?mpfen. Annals of Physics , 1935, 24: 719-752
13 Nielsen A E. Kinetics of Precipitation. Oxford: Pergamon, 1964, 15-25
14 Nielsen A E, S?hnel O. Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data. Journal of Crystal Growth , 1971, 11(3): 233-242
doi: 10.1016/0022-0248(71)90090-X
15 Van Hook A, Bruno A J. Nucleation and growth in sucrose solutions. Discussions of the Faraday Society , 1949, 5: 112-117
doi: 10.1039/df9490500112
16 Sangwal K. Effect of impurities on the metastable zone width of solute-solvent systems. Journal of Crystal Growth , 2009, 311(16): 4050-4061
doi: 10.1016/j.jcrysgro.2009.06.045
17 Nyvlt J, Sohnel O, Matuchova M, Broul M. Kinetics of Industrial Crystallisation. Amsterdam: Elsevier, 1985, 82
18 Sayan P, Ulrich J. Effect of various impurities on the metastable zone width of boric acid. Crystal Research and Technology , 2001, 36(4-5): 411-417
doi: 10.1002/1521-4079(200106)36:4/5<411::AID-CRAT411>3.0.CO;2-L
19 Dhanaraj P V, Bhagavannarayana G, Rajesh N P. Effect of amino acid additives on crystal growth parameters and properties of ammonium dihydrogen orthophosphate crystals. Materials Chemistry and Physics , 2008, 112(2): 490-495
doi: 10.1016/j.matchemphys.2008.06.003
20 Saleemi A N, Rielly C D, Nagy Z K. Comparative investigation of supersaturation and automated direct nucleation control of crystal size distributions using ATR-UV/Vis spectroscopy and FBRM. Crystal Growth & Design , 2012, 12(4): 1792-1807
doi: 10.1021/cg201269c
21 Gutwald T, Mersmann A. Batch cooling crystallization at constant supersaturation: technique and experimental results. Chemical Engineering & Technology , 1990, 13(1): 229-237
doi: 10.1002/ceat.270130131
22 Fujiwara M, Chow P S, Ma D L, Braatz R D. Paracetamol crystallization using laser backscattering and ATR-FTIR spectroscopy: metastability, agglomeration, and control. Crystal Growth & Design , 2002, 2(5): 363-370
doi: 10.1021/cg0200098
23 Abu Bakar M R, Nagy Z K, Saleemi A N, Rielly C D. The impact of direct nucleation control on crystal size distribution in pharmaceutical crystallization processes. Crystal Growth & Design , 2009, 9(3): 1378-1384
doi: 10.1021/cg800595v
24 Hojjati H, Rohani S. Measurement and prediction of solubility of paracetamol in water-isopropanol solution. Part 1. Measurement and data analysis. Organic Process Research & Development , 2006, 10(6): 1101-1109
doi: 10.1021/op060073o
25 Cabrera N, Vermilyea D A. The growth of crystals from solution. In: Doremus R H, Turnbull D, eds. Growth and Perfection of Crystals . New York: Wiley, 1958, 393-410
26 Ristic R I, Finnie S, Sheen D B, Sherwood J N. Macro- and micromorphology of monoclinic paracetamol grown from pure aqueous solution. Journal of Physical Chemistry B , 2001, 105(38): 9057-9066
doi: 10.1021/jp003757l
27 Finnie S, Prasad K R, Sheen D, Sherwood J. Microhardness and dislocation identification studies on paracetamol single crystals. Pharmaceutical Research , 2001, 18(5): 674-681
doi: 10.1023/A:1011093612868
28 Lahav M, Leiserowitz L. The effect of solvent on crystal growth and morphology. Chemical Engineering Science , 2001, 56(7): 2245-2253
doi: 10.1016/S0009-2509(00)00459-0
29 Finnie S, Kennedy A R, Prasad K V R, Ristic R I, Sheen D B, Sherwood J N. para-Acetoxyacetanilide. Acta Crystallographica , 1999, Section C, 55(2): 234-236
[1] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[2] Siming Chen, Yue Wu, Geoffrey W. Stevens, Guoping Hu, Wenshou Sun, Kathryn A. Mumford. Precipitation study of CO2-loaded glycinate solution with the introduction of ethanol as an antisolvent[J]. Front. Chem. Sci. Eng., 2020, 14(3): 415-424.
[3] Peng Luo, Yejun Guan, Hao Xu, Mingyuan He, Peng Wu. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions[J]. Front. Chem. Sci. Eng., 2020, 14(2): 258-266.
[4] Xiaobin Jiang, Linghan Tuo, Dapeng Lu, Baohong Hou, Wei Chen, Gaohong He. Progress in membrane distillation crystallization: Process models, crystallization control and innovative applications[J]. Front. Chem. Sci. Eng., 2017, 11(4): 647-662.
[5] Fatima Mameri, Ouahiba Koutchoukali, Mohamed Bouhelassa, Anne Hartwig, Leila Nemdili, Joachim Ulrich. The feasibility of coating by cooling crystallization on ibuprofen naked tablets[J]. Front. Chem. Sci. Eng., 2017, 11(2): 211-219.
[6] Wen Zhang,Jack W. Szostak,Zhen Huang. Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom[J]. Front. Chem. Sci. Eng., 2016, 10(2): 196-202.
[7] Ahmed ABOUZEID,Sandra PETERSEN,Joachim ULRICH. Utilizing melt crystallization fundamentals in the development of a new tabletting technology[J]. Front. Chem. Sci. Eng., 2014, 8(3): 346-352.
[8] Xinwei ZHANG, Shudong ZHANG, Xiaodan SUN, Zequn YIN, Quanjie LIU, Xiwen ZHANG, Qiuxiang YIN. Nucleation and growth mechanism of cefodizime sodium at different solvent compositions[J]. Front Chem Sci Eng, 2013, 7(4): 490-495.
[9] Xingfu SONG, Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer[J]. Front Chem Sci Eng, 2013, 7(2): 130-138.
[10] C. SCHMIDT, J. ULRICH. Molecular level simulations on multi-component systems —a morphology prediction method[J]. Front Chem Sci Eng, 2013, 7(1): 49-54.
[11] Sandra PETERSEN, K. CHALEEPA, Joachim ULRICH. Importance of emulsions in crystallization—applications for fat crystallization[J]. Front Chem Sci Eng, 2013, 7(1): 43-48.
[12] Y. LIU, M. PIETZSCH, J. ULRICH. Purification of L-asparaginase II by crystallization[J]. Front Chem Sci Eng, 2013, 7(1): 37-42.
[13] S. Kida, M. Ichiji, J. Watanabe, I. Hirasawa. Particle size distribution and shape control of Au nanoparticles used for particle gun[J]. Front Chem Sci Eng, 2013, 7(1): 60-64.
[14] H. Watamura, H. Marukawa, I. Hirasawa. Filtration ability of hollow fiber membrane for production of magnesium ammonium phosphate crystals by reaction crystallization[J]. Front Chem Sci Eng, 2013, 7(1): 55-59.
[15] J. Ulrich, P. Frohberg. Problems, potentials and future of industrial crystallization[J]. Front Chem Sci Eng, 2013, 7(1): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed