Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (2) : 211-219    https://doi.org/10.1007/s11705-017-1619-1
RESEARCH ARTICLE
The feasibility of coating by cooling crystallization on ibuprofen naked tablets
Fatima Mameri1(), Ouahiba Koutchoukali1(), Mohamed Bouhelassa1, Anne Hartwig2, Leila Nemdili1, Joachim Ulrich2
1. University Constantine 3, Engineering Faculty of Pharmaceutical Processes, 25000 Constantine, Algeria
2. Martin Luther University Halle-Wittenberg, Center of Engineering Science, Thermal Process Engineering, D-06099 Halle, Germany
 Download: PDF(446 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sugar spray coating is a frequently used process in the pharmaceutical industry. However, this process presents the disadvantage to form an amorphous coating around the active ingredient. A crystalline coating formed on the surface of a tablet is highly desirable. Recently, a new process of coating by cooling crystallization has been developed and applied on bisacodyl pastilles obtained by melt crystallization. In this work, we investigated the feasibility of coating by cooling crystallization on ibuprofen “naked tablets” manufactured by compression. In the first part of this work, the solubility and the metastable zone width have been determined experimentally for the coating solution because they are essential factors for any crystallization process. In the second part, the coating process is investigated on the operating conditions that affect the surface morphology and the crystal growth rate. These experimental conditions include concentration of the coating solution, degree of sub-cooling, agitation speed, retention time, and surface properties of the naked ibuprofen tablets. The results show that naked tablet coating by cooling crystallization is feasible and can be applied in the pharmaceutical industry.

Keywords coating      solution crystallization      ibuprofen tablets      sucrose     
Corresponding Author(s): Fatima Mameri,Ouahiba Koutchoukali   
Just Accepted Date: 03 January 2017   Online First Date: 15 February 2017    Issue Date: 12 May 2017
 Cite this article:   
Fatima Mameri,Ouahiba Koutchoukali,Mohamed Bouhelassa, et al. The feasibility of coating by cooling crystallization on ibuprofen naked tablets[J]. Front. Chem. Sci. Eng., 2017, 11(2): 211-219.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1619-1
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I2/211
Fig.1  Contact angle between supersaturated sucrose solution and the used seed material
Fig.2  Schematic diagram of experimental setup
Fig.3  (a) Thesolubility of sucrose by refractometer versus temperature and (b) the metastable zone width of the binary system sucrose-water versus temperature by turbidity at an agitation speed of 250 r/min, and a cooling and heating rate of 0.1 K/min
Fig.4  Viscosity of saturated sucrose solutions versus temperature at a shear rate of 100 min–1 and a cooling rate of 0.1 K/min. (a) Viscosity of supersaturated sucrose solution versus temperature for different degree of sub-cooling starting from saturation concentration at 50 °C; (b) viscosity of saturated sucrose solutions versus different saturation concentrations
Fig.5  Contact angle and surface tension as function of different supersaturated sucrose concentration: (a) Contact angle at different surface characteristics, (b) Surface tension of supersaturated sucrose at a degree of sub-cooling 10 K
Fig.6  Growth rates and surface morphologies of seed particles and their coatings: (a) coated ibuprofen tablet, and (b) coated glass beads. Operating conditions: concentration of coating material 72.36 wt-%, degree of sub-cooling 10 K, agitation speed 200 r/min, retention time 180 min, and spatial resolution (100)
Fig.7  Growth rates of sucrose on ibuprofen naked tablets versus retention time at (a) different concentrations and (b) different degree of sub-cooling
Fig.8  Growth rate versus sucrose supersaturation on the surface of ibuprofen naked tablet
Fig.9  Microscope images of the coated surface versus retention times at optimal operating conditions, spatial resolution (100)
Fig.10  (a) An SEM image of the external surface morphology of a final coated ibuprofen tablet at spatial resolution (100); (b) A microscope image of a coated ibuprofen cross section: (b1) thickness of coating, and (b2) cross section of naked ibuprofen; (c) A microscope image of crystal morphology of coated surface
1 Cole G, Hogan J, Holton M. Pharmaceutical Coating Technology. London: Taylor & Francis, 1995, 1–2
2 Sparks R E, Jacobs I C, Mason N S. Pharmaceutical Unit Operations: Coating. Abingdon: Taylor & Francis, 2013, 1
3 Kleinbach E, Riede T. Coating of solids. Chemical Engineering and Processing Process Intensification, 1995, 34(3): 329–337
https://doi.org/10.1016/0255-2701(94)04021-4
4 Gennaro A R. The Science and Practice of Pharmacy. 21st Edition. Indian Edition: Lippincot Williams and Wilkins, 2005, 889
5 Kage H, Takahashi T, Yoshida T, Ogura H, Matsuno Y. Coating efficiency of seed particles in a fluidized bed by atomization of a powder suspension. Powder Technology, 1996, 86(3): 243–250
https://doi.org/10.1016/0032-5910(95)03066-2
6 Lin Y L, Wang T J, Jin Y. Surface characteristics of hydrous silica-coated TiO2 particles. Powder Technology, 2002, 123(2-3): 194–198
https://doi.org/10.1016/S0032-5910(01)00470-3
7 Ruotsalainen M, Heinämäki J, Rantanen J, Yliruusi J. Development of an automation system for a tablet coater. AAPS PharmSciTech, 2002, 3(2): 75–86
https://doi.org/10.1208/pt030214
8 Jono K, Ichikawa H, Miyamoto M, Fukumori Y. A review of particulate design for pharmaceutical powders and their production by spouted bed coating. Powder Technology, 2000, 113(3): 269–277
https://doi.org/10.1016/S0032-5910(00)00310-7
9 Wu C, McGinity J W. Influence of ibuprofen as a solid-state plasticizer in Eudragit RS 30 D on the physicochemical properties of coated beads. AAPS PharmSciTech, 2001, 2(4): 35–43
https://doi.org/10.1007/BF02830564
10 Kim J W, Ulrich J. Coating of pastilles by crystallization. Chemieingenieurtechnik (Weinheim), 2003, 75(6): 719–724
https://doi.org/10.1002/cite.200390138
11 Dorozhkin S V. Fundamentals of the wet-process phosphoric acid production. 2. Kinetics and mechanism of CaSO4∙0.5H2O surface crystallization and coating formation. Industrial & Engineering Chemistry Research, 1997, 36(2): 467–473
https://doi.org/10.1021/ie960219f
12 Kim J W. Manufacture and characteristics of pastilles and their coating by crystallization process. Dissertation for the Doctoral Degree. Saxony-Anhalt: Martin Luther University Halle-Wittenberg, 2003
13 Kim J W, Ulrich J. Development of a new coating process in pharmaceutical industry by crystallization. Engineering in Life Sciences, 2003, 3(3): 121–126
https://doi.org/10.1002/elsc.200390014
14 Römbach E, Ulrich J. Self-controlled coating process for drugs. Crystal Growth & Design, 2007, 7(9): 1618–1622
https://doi.org/10.1021/cg070071a
15 Ulrich J, Schuster A, Stelzer T. Crystalline coats or hollow crystals as tools for product design in pharmaceutical industry. Crystal Growth, 2013, 362(1): 235–237
https://doi.org/10.1016/j.jcrysgro.2011.10.060
16 Jung J W, Kim K J. Effect of supersaturation on the morphology of coated surface in coating by solution crystallization. Industrial & Engineering Chemistry Research, 2011, 50(6): 3475–3482
https://doi.org/10.1021/ie102099a
17 Bensouissi A, Roge B, Mathlouthi M. Effect of conformation and water interactions of sucrose, maltitol, mannitol and xylitol on their metastable zone width and ease of nucleation. Food Chemistry, 2010, 122(2): 443–446
https://doi.org/10.1016/j.foodchem.2009.03.075
18 Mathlouthi M. X-ray diffraction study of the molecular association in aqueous solutions of D-fructose, D-glucose, and sucrose. Carbohydrate Research, 1981, 91(2): 113–123
https://doi.org/10.1016/S0008-6215(00)86024-3
19 Mathlouthi M, Cedus P R. Sucrose Properties and applications. 1st ed. Springer Science+Business Media, 1995, 69–71, 90, 121, 161
20 Schmidt C, Jones M J, Ulrich J. The influence of additives and impurities on crystallization. Crystallization: Basic Concepts and Industrial Applications, 2013, 105–127
21 Goetschius K L. The effect of composition on the viscosity, crystallization and dissolution of simple borate glasses and compositional design of borate based bioactive glasses. Dissertation for the Doctoral Degree. Missouri: Missouri University of Science and Technology, 2014
[1] Yaqin Wang, Lin Yang, Chunxiang Dall’Agnese, Gang Chen, Ai-Jun Li, Xiao-Feng Wang. Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells[J]. Front. Chem. Sci. Eng., 2021, 15(1): 180-186.
[2] Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding. Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts[J]. Front. Chem. Sci. Eng., 2021, 15(1): 138-147.
[3] Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang. Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1065-1071.
[4] Fan Shu, Meng Wang, Jinbo Pang, Ping Yu. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil[J]. Front. Chem. Sci. Eng., 2019, 13(2): 393-399.
[5] Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Front. Chem. Sci. Eng., 2018, 12(3): 367-375.
[6] Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
[7] Futao QIN, Zhijia YU, Xinhui FANG, Xinghua LIU, Xiangyu SUN. A novel composite coating mesh film for oil-water separation[J]. Front Chem Eng Chin, 2009, 3(1): 112-118.
[8] LI Jia, ZOU Jijun, ZHANG Xiangwen, GUO Wei, MI Zhentao. Catalytic cracking of endothermic fuels in coated tube reactor[J]. Front. Chem. Sci. Eng., 2008, 2(2): 181-185.
[9] HUANG Qunwu, WANG Yiping, LI Jinhua. Preparation of solar selective absorbing CuO coating for medium temperature application[J]. Front. Chem. Sci. Eng., 2007, 1(3): 256-260.
[10] ZHANG Xiongfu, WANG Jinqu, LIU Hai′ou, WANG Anjie. Factors affecting the formation of zeolite seed layers and the effects of seed layers on the growth of zeolite silicalite-1 membranes[J]. Front. Chem. Sci. Eng., 2007, 1(2): 172-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed