Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (1) : 138-147    https://doi.org/10.1007/s11705-020-1935-8
RESEARCH ARTICLE
Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts
Tianyu Yao1,2, Haiyan Yang1(), Kui Wang1, Haiyan Jiang1(), Xiao-Bo Chen3, Hezhou Liu2, Qudong Wang1, Wenjiang Ding1
1. National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China
2. The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
3. School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
 Download: PDF(2420 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Effects of NaI as an additive on electrodeposition of Al coatings in AlCl3-NaCl-KCl (80-10-10 wt-%) molten salts electrolyte at 150 °C were investigated by means of cyclic voltammetry, chronopotentiometry, scanning electron microscopy and X-ray diffraction (XRD). Results reveal that addition of NaI in the electrolyte intensifies cathodic polarization, inhibits growth of Al deposits and increases number density of charged particles. The electrodeposition of Al coatings in the AlCl3-NaCl-KCl molten salts electrolyte proceeds via three-dimensional instantaneous nucleation which however exhibits irrelevance with NaI. Galvanostatic deposition results indicate that NaI could facilitate the formation of uniform Al deposits. A compact coating consisting of Al deposits with an average particle size of 3 μm was obtained at a current density of 50 mA∙cm−2 in AlCl3-NaCl-KCl molten salts electrolyte with 10 wt-% NaI. XRD analysis confirmed that NaI could contribute to the formation of Al coating with a preferred crystallographic orientation along (220) plane.

Keywords NaI      additive      electrodeposition      molten salts      Al coating     
Corresponding Author(s): Haiyan Yang,Haiyan Jiang   
Just Accepted Date: 21 April 2020   Online First Date: 13 July 2020    Issue Date: 12 January 2021
 Cite this article:   
Tianyu Yao,Haiyan Yang,Kui Wang, et al. Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts[J]. Front. Chem. Sci. Eng., 2021, 15(1): 138-147.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1935-8
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I1/138
Fig.1  The cyclic voltammogram recorded on a GC electrode at 50 mV?s–1 in the AlCl3-NaCl-KCl (80-10-10 wt-%) molten salts electrolyte, at 150°C.
Fig.2  The CV recorded on a GC electrode at 50 mV?s1 in the AlCl3-NaCl-KCl (80-10-10 wt-%) molten salts electrolyte containing 0, 1, 5 and 10 wt-% NaI, respectively, at 150°C.
Fig.3  The typical current-time transients resulting from these experiments in the AlCl3-NaCl-KCl molten salts electrolyte with (a) no NaI, (b) 1 wt-% NaI, (c) 5 wt-% NaI, (d) 10 wt-% NaI.
Fig.4  Comparison of the experimental and theoretical plots of (i/im)2 vs (t/tm) in the AlCl3-NaCl-KCl molten salts electrolyte with (a) no NaI, (b) 1 wt-% NaI, (c) 5 wt-% NaI and (d) 10 wt-% NaI.
Fig.5  The microscopic morphologies of the Al electrodeposits obtained on a copper foil in the AlCl3-NaCl-KCl (80-10-10 wt-%) molten salts at 150°C and (a) 25 mA?cm2, (b) 50 mA?cm2, (c) 75 mA?cm2, and (d) the typical energy dispersive X-ray spectrometer (EDXS) spectrum of the Al electrodeposits.
Fig.6  The microscopic morphologies of the Al electrodeposits obtained on a copper foil in the AlCl3-NaCl-KCl (80-10-10 wt-%) molten salts electrolyte at 25 mA?cm2 and 150°C with (a) 1 wt-% NaI, (b) 5 wt-% NaI, (c) 10 wt-% NaI, and (d) the typical EDXS spectrum of the Al electrodeposits.
Fig.7  The cross-sectional morphology of the Al coating deposited from the electrolyte with (a) no NaI, (b) 1 wt-% NaI, (c) 5 wt-% NaI and (d) 10 wt-% NaI.
Fig.8  (a) The XRD patterns of the electrodeposition Al coating on a copper foil in AlCl3-NaCl-KCl (80-10-10 wt%) molten salts electrolyte with 0, 1%, 5%, 10% NaI and (b) the TC values calculated from XRD reflections.
1 A Aguero, M Gutierrez, R Muelas. Aluminum solid-solution coating for high-temperature corrosion protection. Oxidation of Metals, 2017, 88(1-2): 145–154
https://doi.org/10.1007/s11085-016-9704-2
2 J J Dai, S Y Li, H X Zhang, H J Yu, C Z Chen, Y Li. Microstructure and high-temperature oxidation resistance of Ti-Al-Nb coatings on a Ti-6Al-4V alloy fabricated by laser surface alloying. Surface and Coatings Technology, 2018, 344: 479–488
https://doi.org/10.1016/j.surfcoat.2018.03.060
3 Q Wang, Q Sun, M X Zhang, W J Niu, C B Tang, K S Wang, X Rui, L Zhai, L Wang. The influence of cold and detonation thermal spraying processes on the microstructure and properties of Al-based composite coatings on Mg alloy. Surface and Coatings Technology, 2018, 352: 627–633
https://doi.org/10.1016/j.surfcoat.2018.08.045
4 I V Belova, D Heuskin, E Sondermann, B Ignatzi, F Kargl, G E Murch, A Meyer. Combined interdiffusion and self-diffusion analysis in Al-Cu liquid diffusion couple. Scripta Materialia, 2018, 143: 40–43
https://doi.org/10.1016/j.scriptamat.2017.09.003
5 L Cho, E J Seo, D H Sulistiyo, K R Jo, S W Kim, J K Oh, Y R Cho, B C De Cooman. Influence of vanadium on the hydrogen embrittlement of aluminized ultra-high strength press hardening steel. Materials Science and Engineering A, 2018, 735: 448–455
https://doi.org/10.1016/j.msea.2018.08.027
6 X X Luo, Z J Yao, P Z Zhang, D D Gu. Al2O3 nanoparticles reinforced Fe-Al laser cladding coatings with enhanced mechanical properties. Journal of Alloys and Compounds, 2018, 755: 41–45
https://doi.org/10.1016/j.jallcom.2018.04.266
7 Ch Christoglou, N Voudouris, G N Angelopoulos, M Pant, W Dahl. Deposition of aluminum on magnesium by a CVD process. Surface and Coatings Technology, 2004, 184(2): 149–155
https://doi.org/10.1016/j.surfcoat.2003.10.065
8 F P Meng, S Peng, G B Xu, Y Wang, F F Ge, F Huang. Structure of uniform and high-quality Al-doped ZnO films by magnetron sputter deposition at low temperatures. Thin Solid Films, 2018, 665: 109–116
https://doi.org/10.1016/j.tsf.2018.08.047
9 Y D Gamburg, G Zangari. Theory and Practice of Metal Electrodeposition. Heidelberg: Springer, 2011, 1–2
10 D Landolt. Electrodeposition science and technology in the last quarter of the twentieth century. Journal of the Electrochemical Society, 2002, 149(3): S9–S20
https://doi.org/10.1149/1.1469028
11 Y K Gu, J Liu, S X Qu, Y D Deng, X P Han, W B Hu, C Zhong. Electrodeposition of alloys and compounds from high-temperature molten salts. Journal of Alloys and Compounds, 2017, 690: 228–238
https://doi.org/10.1016/j.jallcom.2016.08.104
12 Y G Zhao, T J VanderNoot. Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts. Electrochimica Acta, 1997, 42(1): 3–13
https://doi.org/10.1016/0013-4686(96)00080-1
13 F Liu, Y D Deng, X P Han, W B Hu, C Zhong. Electrodeposition of metals and alloys from ionic liquids. Journal of Alloys and Compounds, 2016, 654: 163–170
https://doi.org/10.1016/j.jallcom.2015.09.137
14 W Simka, D Puszczyk, G Nawrat. Electrodeposition of metals from non-aqueous solutions. Electrochimica Acta, 2009, 54(23): 5307–5319
https://doi.org/10.1016/j.electacta.2009.04.028
15 J F Zhang, C W Yan, F H Wang. Electrodeposition of Al-Mn alloy on AZ31B magnesium alloy in molten salts. Applied Surface Science, 2009, 255(9): 4926–4932
https://doi.org/10.1016/j.apsusc.2008.12.039
16 Y L Li, P Zhao, Y H Dai, M Q Yao, H B Gan, W C Hu. Electrochemical deposition of Al-Mg alloys on tungsten wires from AlCl3-NaCl-KCl melts. Fusion Engineering and Design, 2016, 103: 8–12
https://doi.org/10.1016/j.fusengdes.2015.11.053
17 W Li, Z Chen, C C Wei, W P Kong, B H Xu, X Y Jia, C L Diao, S J Li. The electrochemical formation of Al-Cu alloys in a LiCl-KCl-AlCl3 molten salt. Electrochimica Acta, 2016, 196: 162–168
https://doi.org/10.1016/j.electacta.2016.02.179
18 M Ueda, H Hayashi, T Ohtsuka. Electrodeposition of Al-Pt alloys using constant potential electrolysis in AlCl3-NaCl-KCl molten salt containing PtCl2. Surface and Coatings Technology, 2011, 205(19): 4401–4403
https://doi.org/10.1016/j.surfcoat.2011.03.051
19 M Ueda, R Inaba, T Ohtsuka. Composition and structure of Al-Sn alloys formed by constant potential electrolysis in an AlCl3-NaCl-KCl-SnCl2 molten salt. Electrochimica Acta, 2013, 100: 281–284
https://doi.org/10.1016/j.electacta.2012.09.069
20 N M Vukićević, V S Cvetković, L Jovanović, S Stevanović, J N Jovićević. Alloy formation by electrodeposition of niobium and aluminium on gold from chloroaluminate melts. International Journal of Electrochemical Science, 2017, 12: 1075–1093
https://doi.org/10.20964/2017.02.34
21 M Ueda, T Teshima, H Matsushima, T Ohtsuka. Electroplating of Al-Zr alloys in AlCl3-NaCl-KCl molten salts to improve corrosion resistance of Al. Journal of Solid State Electrochemistry, 2015, 19(12): 3485–3489
https://doi.org/10.1007/s10008-015-2861-4
22 K Sato, H Matsushima, M Ueda. Electrodeposition of Al-Ta alloys in NaCl-KCl-AlCl3 molten salt containing TaCl5. Applied Surface Science, 2016, 388: 794–798
https://doi.org/10.1016/j.apsusc.2016.03.001
23 H Ebe, M Ueda, T Ohtsuka. Electrodeposition of Sb, Bi, Te, and their alloys in AlCl3-NaCl-KCl molten salt. Electrochimica Acta, 2007, 53(1): 100–105
https://doi.org/10.1016/j.electacta.2007.03.017
24 M Ueda, H Kigawa, T Ohtsuka. Co-deposition of Al-Cr-Ni alloys using constant potential and potential pulse techniques in AlCl3-NaCl-KCl molten salt. Electrochimica Acta, 2007, 52(7): 2515–2519
https://doi.org/10.1016/j.electacta.2006.09.001
25 M Jafarian, M G Mahjani, F Gobal, I Danaee. Effect of potential on the early stage of nucleation and growth during aluminum electrocrystallization from molten salt (AlCl3-NaCl-KCl). Journal of Electroanalytical Chemistry, 2006, 588(2): 190–196
https://doi.org/10.1016/j.jelechem.2005.12.028
26 T P Moffat. Electrodeposition of Al-Cr metallic glass. Journal of the Electrochemical Society, 1994, 141(9): L115–L117
https://doi.org/10.1149/1.2055172
27 Z M Ding, Q Y Feng, C B Shen, H Gao. Rule of formation of aluminum electroplating layer on Q235 steel. Journal of Environmental Sciences (China), 2011, 23: S138–S141
https://doi.org/10.1016/S1001-0742(11)61096-6
28 B Nayak, M M Misra. The electrodeposition of aluminium on brass from a molten aluminium chloride-sodium chloride bath. Journal of Applied Electrochemistry, 1977, 7(1): 45–50
https://doi.org/10.1007/BF00615529
29 Q F Li, H A Hjuler, R W Berg, N J Bjerrum. Electroless growth of aluminum dendrites in NaCl-AlCl3 melts. Journal of the Electrochemical Society, 1989, 136(10): 2940–2943
https://doi.org/10.1149/1.2096377
30 L Jiang, Z Jin, F Xu, Y Yu, G Wei, H Ge, Z Zhang, C Cao. Effect of potential on aluminium early-stage electrodeposition onto NdFeB magnet. Surface Engineering, 2017, 33(5): 375–382
https://doi.org/10.1080/02670844.2016.1231862
31 P Fellner, M Chrenková-Paučírová, K Matiašovský. Electrolytic aluminum plating in molten salt mixtures based on AlCl3. I: Influence of the addition of tetramethylammonium chloride. Surface Technology, 1981, 14(2): 101–108
https://doi.org/10.1016/0376-4583(81)90071-6
32 L Liu, X M Lu, Y J Cai, Y Zheng, S J Zhang. Influence of additives on the speciation, morphology, and nanocrystallinity of aluminium electrodeposition. Australian Journal of Chemistry, 2012, 65(11): 1523–1528
https://doi.org/10.1071/CH12305
33 M Miyake, Y Kubo, T Hirato. Hull cell tests for evaluating the effects of polyethylene amines as brighteners in the electrodeposition of aluminum from dimethylsulfone-AlCl3 baths. Electrochimica Acta, 2014, 120: 423–428
https://doi.org/10.1016/j.electacta.2013.12.046
34 Q Q Zhang, Q Wang, S J Zhang, X M Lu. Effect of nicotinamide on electrodeposition of Al from aluminium chloride (AlCl3)-1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquids. Journal of Solid State Electrochemistry, 2014, 18(1): 257–267
https://doi.org/10.1007/s10008-013-2269-y
35 Q Wang, Q Q Zhang, B Chen, X M Lu, S J Zhang. Electrodeposition of bright Al coatings from 1-butyl-3-methylimidazolium chloroaluminate ionic liquids with specific additives. Journal of the Electrochemical Society, 2015, 162(8): D320–D324
https://doi.org/10.1149/2.1001507jes
36 R C Howie, D W Macmillan. The electrodeposition of aluminium from molten aluminium chloride/sodium chloride. Journal of Applied Electrochemistry, 1972, 2(3): 217–222
https://doi.org/10.1007/BF02354979
37 Q F Li, H A Hjuler, R W Berg, N J Bjerrum. Electrochemical deposition and dissolution of aluminum in NaAlCl4 melts influence of MnCl2 and sulfide addition. Journal of the Electrochemical Society, 1990, 137: 2794–2798
https://doi.org/10.1149/1.2087074
38 M Jafarian, M G Mahjani, F Gobal, I Danaee. Electrodeposition of aluminum from molten AlCl3-NaCl-KCl mixture. Journal of Applied Electrochemistry, 2006, 36(10): 1169–1173
https://doi.org/10.1007/s10800-006-9192-1
39 Y K Delimarsky, N K Tumanova. A study of the effect of surfactants on electrode processes in molten salts. Electrochimica Acta, 1979, 24(1): 19–24
https://doi.org/10.1016/0013-4686(79)80034-1
40 M Paučírová, K Matiašovský. Electrolytic aluminium-plating in fused salts based on chlorides. Electrodeposition and Surface Treatment, 1975, 3(2): 121–128
https://doi.org/10.1016/0300-9416(75)90051-6
41 A Bakkar, V Neubert. Electrodeposition and corrosion characterisation of micro- and nano-crystalline aluminum from AlCl3/1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochimica Acta, 2013, 103: 211–218
https://doi.org/10.1016/j.electacta.2013.03.198
42 M Li, B L Gao, W T Chen, C Y Liu, Z W Wang, Z N Shi, X W Hu. Electrodeposition behavior of aluminum from urea-acetamide-lithium halide low-temperature molten salts. Electrochimica Acta, 2013, 185: 148–155
https://doi.org/10.1016/j.electacta.2015.10.112
43 M Li, B L Gao, Z N Shi, X W Hua, S X Wang, L X Li, Z W Wang, J Y Yu. Electrochemical study of nickel from urea-acetamide-LiBr low-temperature molten salt. Electrochimica Acta, 2015, 169: 82–89
https://doi.org/10.1016/j.electacta.2015.04.047
44 A Abbott, J C Barron, G Frisch, K Ryder, A F S Silva. The effect of additives on zinc electrodeposition from deep eutectic solvents. Electrochimica Acta, 2011, 56(14): 5272–5279
https://doi.org/10.1016/j.electacta.2011.02.095
45 T Tsuda, T Nohira, Y Ito. Nucleation and surface morphology of aluminum-lanthanum alloy electrodeposited in a LaCl3-saturatedAlCl3-EtMeImCl room temperature molten salt. Electrochimica Acta, 2002, 47(17): 2817–2822
https://doi.org/10.1016/S0013-4686(02)00168-8
46 Q Liao, W R Pitner, G Stewart, C Hussey, G R Stafford. Electrodeposition of aluminum from the aluminum chloride-1-methyl-3-ethyl imidazolium chloride room temperature molten salt+ benzene. Journal of the Electrochemical Society, 1997, 144(3): 936–943
https://doi.org/10.1149/1.1837510
[1] Tong Zhang, Elie Paillard. Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery[J]. Front. Chem. Sci. Eng., 2018, 12(3): 577-591.
[2] Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
[3] Yu Cao, Xiaoxuan Liu, Ling Peng. Molecular engineering of dendrimer nanovectors for siRNA delivery and gene silencing[J]. Front. Chem. Sci. Eng., 2017, 11(4): 663-675.
[4] Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions[J]. Front. Chem. Sci. Eng., 2017, 11(3): 308-316.
[5] Ying ZHANG, Shili ZHENG, Yifei ZHANG, Hongbin XU, Yi ZHANG. Additives effects on crystallization and morphology in a novel caustic aluminate solution decomposition process[J]. Front Chem Eng Chin, 2009, 3(1): 88-92.
[6] KE Yangchuan, SUN Mingzhuo, SONG Yanxin, YANG GuangFu. Preparation and properties of nano SiO2 core-shell structured additives and their nanocomposite with polypropylene[J]. Front. Chem. Sci. Eng., 2007, 1(1): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed