Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 663-675    https://doi.org/10.1007/s11705-017-1623-5
REVIEW ARTICLE
Molecular engineering of dendrimer nanovectors for siRNA delivery and gene silencing
Yu Cao1, Xiaoxuan Liu2, Ling Peng1()
1. Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Caner, 13288 Marseille, France
2. State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
 Download: PDF(615 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Small interfering RNA (siRNA) therapeutics hold great promise to treat a variety of diseases, as long as they can be delivered safely and effectively into cells. Dendrimers are appealing vectors for siRNA delivery by virtue of their well-defined molecular architecture and multivalent cooperativity. However, the clinical translation of RNA therapeutics mediated by dendrimer delivery is hampered by the lack of dendrimers that are of high quality to meet good manufacturing practice standard. In this context, we have developed small amphiphilic dendrimers that self-assemble into supramolecular structures, which mimic high-generation dendrimers synthesized with covalent construction, yet are easy to produce in large amount and superior quality. Indeed, the concept of supramolecular dendrimers has proved to be very promising, and has opened up a new avenue for dendrimer-mediated siRNA delivery. A series of self-assembling supramolecular dendrimers have consequently been established, some of them out-performing the currently available nonviral vectors in delivering siRNA to various cell types in vitro and in vivo, including human primary cells and stem cells. This short review presents a brief introduction to RNAi therapeutics, the obstacles to their delivery and the advantages of dendrimer delivery vectors as well as our bio-inspired structurally flexible dendrimers for siRNA delivery. We then highlight our efforts in creating self-assembling amphiphilic dendrimers to construct supramolecular dendrimer nanosystems for effective siRNA delivery as well as the related structural alterations to enhance delivery efficiency. The advent of self-assembling supramolecular dendrimer nanovectors holds great promise and heralds a new era of dendrimer-mediated delivery of RNA therapeutics in biomedical applications.

Keywords gene therapy      RNAi therapeutics      dendrimer      nanovectors      gene silencing     
Corresponding Author(s): Ling Peng   
Just Accepted Date: 12 January 2017   Online First Date: 31 March 2017    Issue Date: 06 November 2017
 Cite this article:   
Yu Cao,Xiaoxuan Liu,Ling Peng. Molecular engineering of dendrimer nanovectors for siRNA delivery and gene silencing[J]. Front. Chem. Sci. Eng., 2017, 11(4): 663-675.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1623-5
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/663
Fig.1  The mechanism of RNA interference. Silencing is triggered by long double-stranded RNAs, which are recognized and processed into small interfering RNAs (siRNAs) by the enzyme Dicer. The duplex siRNAs are then passed to the RISC (RNA-induced silencing complex), which is activated by unwinding of the siRNA. The sense strand of the siRNA is cleaved and discarded, while the antisense strand remains associated with the active RISC complex, guiding it to a target mRNA containing a complementary sequence. The complex then cleaves the mRNA, resulting in silencing of the targeted gene. The RISC can destroy multiple identical transcripts by undergoing further catalytic cycles of binding and cleavage of target mRNAs
Fig.2  Nonviral vector-mediated siRNA delivery and gene silencing
Fig.3  General presentation of the structure of a dendrimer, which is composed of a central core, the repetitive branching units which form the generations and the terminal groups. The central core itself is generation 0 (G0); generation 1 (G1), generation 2 (G2) and generation 3 (G3) refer to dendrimers with the first, second and third levels of branching, respectively
Fig.4  Molecular structure of a PAMAM dendrimer with a triethanolamine (TEA) core. For clarity, only a generation 4 dendrimer is presented
Fig.5  Cartoon presentation of siRNA delivery mediated by a dendrimer
Fig.6  (A) Self-assembly of a small amphiphilic dendrimer to create a supramolecular dendrimer that mimics a covalently synthesized high-generation dendrimer for siRNA delivery [43]; (B) amphiphilic dendrimer 1, carrying a hydrophobic C18 alkyl chain and a hydrophilic PAMAM dendron with 8 terminal amine groups [42]
Fig.7  Structural derivatives of the amphiphilic dendrimer 1[42,43]
Fig.8  Arginine-terminated amphiphilic dendrimer 10 to enhance cellular uptake for more efficient siRNA delivery [45]
Fig.9  (A) Amphiphilic dendrimer 11 bearing two hydrophobic alkyl chains and a hydrophilic PAMAM dendron; (B) 11 forms dendrimersomes, which upon addition of siRNA, undergo spontaneous rearrangement into micelles, in order to provide maximal exposure of the positively-charged dendrimer terminals for interaction with the negatively-charged siRNA [47]
Fig.10  The bola-amphiphilic dendrimer 12 designed for ROS-responsive siRNA delivery. (A) Chemical structure of 12; (B) schematic representation of 12for the ROS-triggered delivery of siRNA and consequential gene silencing. The dendrimer 12is able to form nanosized complexes with siRNA, which can be internalized by the cancer cell before releasing siRNA in response to ROS, leading to effective gene silencing [49]
1 Bobbin M L, Rossi J J. RNA interference (RNAi)-based therapeutics: Delivering on the promise? Annual Review of Pharmacology and Toxicology, 2016, 56(1): 103–122
https://doi.org/10.1146/annurev-pharmtox-010715-103633
2 Haussecker D, Kay M A. Drugging RNAi. Science, 2015, 347(6226): 1069–1070
https://doi.org/10.1126/science.1252967
3 Crunkhorn S. Trial watch: Pioneering RNAi therapy shows antitumour activity in humans. Nature Reviews. Drug Discovery, 2013, 12(3): 178–178
https://doi.org/10.1038/nrd3962
4 Castanotto D, Rossi J J. The promises and pitfalls of RNA-interference-based therapeutics. Nature, 2009, 457(7228): 426–433
https://doi.org/10.1038/nature07758
5 Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806–811
https://doi.org/10.1038/35888
6 Bernstein E, Caudy A A, Hammond S M, Hannon G J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363–366
https://doi.org/10.1038/35053110
7 Ameres S L, Martinez J, Schroeder R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell, 2007, 130(1): 101–112
https://doi.org/10.1016/j.cell.2007.04.037
8 Hutvágner G, Zamore P D. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002, 297(5589): 2056–2060
https://doi.org/10.1126/science.1073827
9 Yin H, Kanasty R L, Eltoukhy A A, Vegas A J, Dorkin J R, Anderson D G. Non-viral vectors for gene-based therapy. Nature Reviews. Genetics, 2014, 15(8): 541–555
https://doi.org/10.1038/nrg3763
10 Kanasty R, Dorkin J R, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nature Materials, 2013, 12(11): 967–977
https://doi.org/10.1038/nmat3765
11 Whitehead K A, Langer R, Anderson D G. Knocking down barriers: Advances in siRNA delivery. Nature Reviews. Drug Discovery, 2009, 8(2): 129–138
https://doi.org/10.1038/nrd2742
12 Liu X, Rocchi P, Peng L. Dendrimers as non-viral vectors for siRNA delivery. New Journal of Chemistry, 2012, 36(2): 256–263
https://doi.org/10.1039/C1NJ20408D
13 Ravina M, Paolicelli P, Seijo B, Sanchez A. Knocking down gene expression with dendritic vectors. Mini-Reviews in Medicinal Chemistry, 2010, 10(1): 73–86
https://doi.org/10.2174/138955710791112569
14 Tomalia D A, Christensen J B, Boas U. Dendrimers, Dendrons, and Dendritic Polymers: Discovery, Applications, and the Future.London: Cambridge University Press, 2012, 100–105
15 Walter M V, Malkoch M. Simplifying the synthesis of dendrimers: Accelerated approaches. Chemical Society Reviews, 2012, 41(13): 4593–4609
https://doi.org/10.1039/c2cs35062a
16 Tomalia D A B H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers: Starburst-dendritic macromolecules. Polymer Journal, 1985, 17(1): 117–132
https://doi.org/10.1295/polymj.17.117
17 Haensler J, Szoka F C. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chemistry, 1993, 4(5): 372–379
https://doi.org/10.1021/bc00023a012
18 Kukowska-Latallo J F, Bielinska A U, Johnson J, Spindler R, Tomalia D A, Baker J R. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(10): 4897–4902
https://doi.org/10.1073/pnas.93.10.4897
19 Eichman J D, Bielinska A U, Kukowska-Latallo J F, Baker J R Jr. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharmaceutical Science & Technology Today, 2000, 3(7): 232–245
https://doi.org/10.1016/S1461-5347(00)00273-X
20 Guillot-Nieckowski M, Eisler S, Diederich F. Dendritic vectors for gene transfection. New Journal of Chemistry, 2007, 31(7): 1111–1127
https://doi.org/10.1039/B614877H
21 Mintzer M A, Simanek E E. Nonviral vectors for gene delivery. Chemical Reviews, 2009, 109(2): 259–302
https://doi.org/10.1021/cr800409e
22 Behr J P. The proton sponge: A trick to enter cells the viruses did not exploit. CHIMIA International Journal for Chemistry, 1997, 51(1-2): 34–36
23 Liu X, Liu C, Catapano C V, Peng L, Zhou J, Rocchi P. Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAi-based therapeutics. Biotechnology Advances, 2014, 32(4): 844–852
https://doi.org/10.1016/j.biotechadv.2013.08.001
24 Biswas S, Torchilin V. Dendrimers for siRNA delivery. Pharmaceuticals, 2013, 6(2): 161–183
https://doi.org/10.3390/ph6020161
25 Kang H, DeLong R, Fisher M H, Juliano R L. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharmaceutical Research, 2005, 22(12): 2099–2106
https://doi.org/10.1007/s11095-005-8330-5
26 Zhou J, Wu J, Hafdi N, Behr J P, Erbacher P, Peng L. PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chemical Communications, 2006, 22: 2362–2364
https://doi.org/10.1039/b601381c
27 Wu J, Zhou J, Qu F, Bao P, Zhang Y, Peng L. Polycationic dendrimers interact with RNA molecules: Polyamine dendrimers inhibit the catalytic activity of Candida ribozymes. Chemical Communications, 2005, 3: 313–315
https://doi.org/10.1039/b414241a
28 Venkatesh S, Workman J L. Histone exchange, chromatin structure and the regulation of transcription. Nature Reviews. Molecular Cell Biology, 2015, 16(3): 178–189
https://doi.org/10.1038/nrm3941
29 Liu X, Wu J, Yammine M, Zhou J, Posocco P, Viel S, Liu C, Ziarelli F, Fermeglia M, Pricl S, et al. Structurally flexible triethanolamine core PAMAM dendrimers are effective nanovectors for DNA transfection in vitro and in vivo to the mouse thymus. Bioconjugate Chemistry, 2011, 22(12): 2461–2473
https://doi.org/10.1021/bc200275g
30 Liu X, Liu C, Laurini E, Posocco P, Pricl S, Qu F, Rocchi P, Peng L. Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer. Molecular Pharmaceutics, 2012, 9(3): 470–481
https://doi.org/10.1021/mp2006104
31 Posocco P, Liu X, Laurini E, Marson D, Chen C, Liu C, Fermeglia M, Rocchi P, Pricl S, Peng L. Impact of siRNA overhangs for dendrimer-mediated siRNA delivery and gene silencing. Molecular Pharmaceutics, 2013, 10(8): 3262–3273
https://doi.org/10.1021/mp400329g
32 Shen X C, Zhou J, Liu X, Wu J, Qu F, Zhang Z L, Pang D W, Quelever G, Zhang C C, Peng L. Importance of size-to-charge ratio in construction of stable and uniform nanoscale RNA/dendrimer complexes. Organic & Biomolecular Chemistry, 2007, 5(22): 3674–3681
https://doi.org/10.1039/b711242d
33 Liu X, Rocchi P, Qu F Q, Zheng S Q, Liang Z C, Gleave M, Iovanna J, Peng L. PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem, 2009, 4(8): 1302–1310
https://doi.org/10.1002/cmdc.200900076
34 Liu C, Liu X, Rocchi P, Qu F, Iovanna J L, Peng L. Arginine-terminated generation 4 PAMAM dendrimer as an effective nanovector for functional siRNA delivery in vitro and in vivo. Bioconjugate Chemistry, 2014, 25(3): 521–532
https://doi.org/10.1021/bc4005156
35 Liu X, Liu C, Chen C, Bentobji M, Cheillan F A, Piana J T, Qu F, Rocchi P, Peng L. Targeted delivery of Dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer delivery system. Nanomedicine; Nanotechnology, Biology, and Medicine, 2014, 10(8): 1627–1636
https://doi.org/10.1016/j.nano.2014.05.008
36 Reebye V, Sætrom P, Mintz P J, Huang K W, Swiderski P, Peng L, Liu C, Liu X, Lindkær-Jensen S, Zacharoulis D, et al. Novel RNA oligonucleotide improves liver function and inhibits liver carcinogenesis in vivo. Hepatology (Baltimore, MD.), 2014, 59(1): 216–227
https://doi.org/10.1002/hep.26669
37 Kala S, Mak A S C, Liu X, Posocco P, Pricl S, Peng L, Wong A S T. Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer. Journal of Medicinal Chemistry, 2014, 57(6): 2634–2642
https://doi.org/10.1021/jm401907z
38 Cui Q, Yang S, Ye P, Tian E, Sun G, Zhou J, Sun G, Liu X, Chen C, Murai K, et al. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nature Communications, 2016, 7: 10637–10651
https://doi.org/10.1038/ncomms10637
39 Lang M F, Yang S, Zhao C, Sun G, Murai K, Wu X, Wang J, Gao H, Brown C E, Liu X, et al. Genome-wide profiling identified a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. PLoS One, 2012, 7(4): e36248–e36251
https://doi.org/10.1371/journal.pone.0036248
40 Zhou J, Neff C P, Liu X, Zhang J, Li H, Smith D D, Swiderski P, Aboellail T, Huang Y, Du Q, et al. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Molecular Therapy, 2011, 19(12): 2228–2238
https://doi.org/10.1038/mt.2011.207
41 Svenson S. The dendrimer paradox—High medical expectations but poor clinical translation. Chemical Society Reviews, 2015, 44(12): 4131–4144
https://doi.org/10.1039/C5CS00288E
42 Yu T, Liu X, Bolcato-Bellemin A L, Wang Y, Liu C, Erbacher P, Qu F, Rocchi P, Behr J P, Peng L. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angewandte Chemie International Edition in English, 2012, 51(34): 8478–8484
https://doi.org/10.1002/anie.201203920
43 Chen C, Posocco P, Liu X, Cheng Q, Laurini E, Zhou J, Liu C, Wang Y, Tang J, Col V D, et al. Mastering dendrimer self-assembly for efficient siRNA delivery: From conceptual design to in vivo efficient gene silencing. Small, 2016, 12(27): 3667–3676
https://doi.org/10.1002/smll.201503866
44 Márquez-Miranda V, Araya-Durán I, Camarada M B, Comer J, Valencia-Gallegos J A, González-Nilo F D. Self-assembly of amphiphilic dendrimers: The role of generation and alkyl chain length in siRNA interaction. Scientific Reports, 2016, 6: 29436–29451
https://doi.org/10.1038/srep29436
45 Liu X, Liu C, Zhou J, Chen C, Qu F, Rossi J J, Rocchi P, Peng L. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer. Nanoscale, 2015, 7(9): 3867–3875
https://doi.org/10.1039/C4NR04759A
46 Nakase I, Akita H, Kogure K, Gräslund A, Langel Ü, Harashima H, Futaki S. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Accounts of Chemical Research, 2012, 45(7): 1132–1139
https://doi.org/10.1021/ar200256e
47 Liu X, Zhou J, Yu T, Chen C, Cheng Q, Sengupta K, Huang Y, Li H, Liu C, Wang Y, et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angewandte Chemie International Edition in English, 2014, 53(44): 11822–11827
https://doi.org/10.1002/anie.201406764
48 Percec V, Wilson D A, Leowanawat P, Wilson C J, Hughes A D, Kaucher M S, Hammer D A, Levine D H, Kim A J, Bates F S, et al. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science, 2010, 328(5981): 1009–1014
https://doi.org/10.1126/science.1185547
49 Liu X, Wang Y, Chen C, Tintaru A, Cao Y, Liu J, Ziarelli F, Tang J, Guo H, Rosas R, et al. A fluorinated bola-amphiphilic dendrimer for on-demand delivery of siRNA, via specific response to reactive oxygen species. Advanced Functional Materials, 2016, 26(47): 8594–8603
https://doi.org/10.1002/adfm.201604192
50 Gorrini C, Harris I S, Mak T W. Modulation of oxidative stress as an anticancer strategy. Nature Reviews. Drug Discovery, 2013, 12(12): 931–947
https://doi.org/10.1038/nrd4002
51 Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nature Reviews. Drug Discovery, 2009, 8(7): 579–591
https://doi.org/10.1038/nrd2803
52 Valentine D L. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Reviews. Microbiology, 2007, 5(4): 316–323
https://doi.org/10.1038/nrmicro1619
53 Chen H, Viel S, Ziarelli F, Peng L. 19F NMR: A valuable tool for studying biological events. Chemical Society Reviews, 2013, 42(20): 7971–7982
https://doi.org/10.1039/c3cs60129c
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed