Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 308-316    https://doi.org/10.1007/s11705-016-1587-x
RESEARCH ARTICLE
Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions
Zhi Sun1,2(), Hongbin Cao2, Prakash Venkatesan1, Wei Jin2(), Yanping Xiao3, Jilt Sietsma1, Yongxiang Yang1
1. Department of Materials Science and Engineering, TU Delft, 2628 CD Delft, the Netherlands
2. National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
3. Ironmaking Department, R&D, Tata Steel, 1970 CA IJmuiden, the Netherlands
 Download: PDF(331 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Leaching selectivity during metal recovery from complex electronic waste using a hydrochemical process is always one of the generic issues. It was recently improved by using ammonia-based leaching process, specifically for electronic waste enriched with copper. This research proposes electrodeposition as the subsequent approach to effectively recover copper from the solutions after selective leaching of the electronic waste and focuses on recognising the electrochemical features of copper recovery. The electrochemical reactions were investigated by considering the effects of copper concentration, scan rate and ammonium salts. The diffusion coefficient, charge transfer coefficient and heterogeneous reaction constant of the electrodeposition process were evaluated in accordance with different solution conditions. The results have shown that electrochemical recovery of copper from ammonia-based solution under the conditions of selective electronic waste treatment is charge transfer controlled and provide bases to correlate the kinetic parameters with further optimisation of the selective recovery of metals from electronic waste.

Keywords copper recovery      electronic waste      end-of-life products      selective leaching      electrodeposition     
Corresponding Author(s): Zhi Sun,Wei Jin   
Just Accepted Date: 26 August 2016   Online First Date: 12 September 2016    Issue Date: 23 August 2017
 Cite this article:   
Zhi Sun,Hongbin Cao,Prakash Venkatesan, et al. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions[J]. Front. Chem. Sci. Eng., 2017, 11(3): 308-316.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1587-x
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/308
Fig.1  Schematic plot of the complex electronic waste recycling process
Fig.2  E-pH diagram of copper-ammonia system at 298.15 K and 105 Pa (potential vs.SHE)
Fig.3  Kinetic path of copper ions from bulk to the cathode surface during electrodeposition (the electrical double layer is simplified into one layer—with only one set of kinetics parameters in the layer)
Fig.4  Multiple cyclic voltammograms of copper ammine in an ammonia-ammonium carbonate based solution with copper concentration of 20 g/L (pH= 9.5) recorded on a glassy carbon working electrode at room temperature with a scan rate of 20 mV/s. The insert figure gives the enlarged view of the anodic shoulder
Fig.5  Cyclic voltammograms of copper ammine in ammonia-ammonium carbonate based solutions (pH= 9.5). (a) the effect of scan rate (with the copper concentration of 20 g/L), (b) the effect of copper concentration (at a scan rate of 20 mV/s)
Copper concentration /(g?L −1)
10 20 40 60 80
ln( ipc) /A ?Eb) /V ln( ipc) /A ?Eb)/V ln( ipc) /A ?Eb)/V ln( ipc) /A ?Eb)/V ln( ipc) /A ?Eb)/V
va) /(10−3 V?s−1)
?10
−7.26 −0.34 −6.46 −0.33 −6.10 −0.27 −5.82 −0.25 −5.76 −0.22
?20 −6.86 −0.37 −6.22 −0.37 −5.82 −0.33 −5.52 −0.3 −5.23 −0.28
?50 −6.48 −0.44 −5.95 −0.42 −5.50 −0.39 −5.19 −0.36 −4.98 −0.34
?100 −6.15 −0.49 −5.72 −0.46 −5.25 −0.44 −4.94 −0.43 −4.71 −0.43
a /10−1 0.89 0.72 0.65 0.63 0.61
k0/(10−4 cm?s−1) 1.39 2.38 2.74 2.89 2.97
ipc/10−4 A
v1/2
?0.10
−7.05 −15.67 −22.32 −29.61 −36.15
?0.14 −10.48 −19.88 −29.76 −40.07 −53.29
?0.22 −15.31 −26.02 −40.88 −55.97 −68.65
?0.32 −21.29 −32.63 −52.27 −71.19 −90.17
Dc) /(10−6cm2?s−1) 2.79 2.52 2.25 2.09 1.99
Tab.1  Correlation between the cathodic peak current and the peak potential
Fig.6  Effect of copper concentration in ammonia-ammonium carbonate solutions on the charge transfer coefficient and transfer rate constant (the lines are B-spline fitting against the experimental data)
Fig.7  Effect of copper concentration on the diffusion coefficient of copper ammine complex at pH 9.5 and a comparison with the reported data for diluted solutions [15] (red-literature and black-current experiments)
Fig.8  Effect of ammonia salts on the charge transfer rate constant
Fig.9  SEM Morphology and XRD pattern of the electrodeposited copper (current density of 250 A/m2, 40 g/L copper in ammonia-ammonium carbonate solution)
1 Omar H, Rohani  S. Treatment of landfill waste, leachate and landfill gas: A review. Frontiers of Chemical Science and Engineering, 2015, 9(1): 15–32
https://doi.org/10.1007/s11705-015-1501-y
2 Bigum M, Brogaard  L, Christensen T H . Metal recovery from high-grade WEEE: A life cycle assessment. Journal of Hazardous Materials, 2012, 207-208(1): 8–14
https://doi.org/10.1016/j.jhazmat.2011.10.001
3 Anindya A. Minor elements distribution during the smelting of WEEE with copper scrap. Dissertation for the Doctoral Degree. Melbourne: RMIT University, 2012
4 Montero R, Guevara  A, de la Torre E. Recovery of gold, silver, copper and niobium from printed circuit boards using leaching column. Journal of Earth Science and Engineering, 2012, 2: 590–595
5 Liang G, Tang  J, Liu W ,  Zhou Q. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). Journal of Hazardous Materials, 2013, 250-251: 238–245
https://doi.org/10.1016/j.jhazmat.2013.01.077
6 Joda N N, Rashchi  F. Recovery of ultra fine grained silver and copper from PC board scraps. Separation and Purification Technology, 2012, 92: 36–42
https://doi.org/10.1016/j.seppur.2012.03.022
7 Rudnik E, Kołczyk  K, Kutyła D . Comparative studies on hydrometallurgical treatment of smelted low-grade electronic scraps for selective copper recovery. Transactions of Nonferrous Metals Society of China, 2015, 25(8): 2763–2771
https://doi.org/10.1016/S1003-6326(15)63901-2
8 Harris G B, White  C W, Demopoulos  G P, Ballantyne  B. Recovery of copper from a massive polymetallic sulphide by high concentration chloride leaching. Canadian Metallurgical Quarterly, 2008, 47(3): 347–356
https://doi.org/10.1179/cmq.2008.47.3.347
9 Long L H, Jeong  J, Lee J C ,  Pandey B D ,  Yoo J M ,  Huyunh T H . Hydrometallurgical process for copper recovery from waste printed circuit boards (PCBs). Mineral Processing and Extractive Metallurgy Review, 2011, 32(2): 90–104
https://doi.org/10.1080/08827508.2010.530720
10 Koyama K, Tanaka  M, Lee J C . Copper leaching behavior from waste printed circuit board in ammoniacal alkaline solution. Materials Transactions, 2006, 47(7): 1788–1792
https://doi.org/10.2320/matertrans.47.1788
11 Sun Z H I ,  Xiao Y, Sietsma  J, Agterhuis H ,  Visser G ,  Yang Y. Selective copper recovery from complex mixtures of end-of-life electronic products with ammonia-based solution. Hydrometallurgy, 2015, 152: 91–99
https://doi.org/10.1016/j.hydromet.2014.12.013
12 Wang J, Wang  H, Han Z ,  Han J. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Frontiers of Chemical Science and Engineering, 2015, 9(1): 57–63
https://doi.org/10.1007/s11705-014-1444-8
13 Nila C, González  I. The role of pH and Cu(II) concentration in the electrodeposition of Cu(II) in NH4Cl solutions. Journal of Electroanalytical Chemistry, 1996, 401(1-2): 171–182
https://doi.org/10.1016/0022-0728(95)04278-4
14 Ramos A, Miranda-Hernández  M, González I . Influence of chloride and nitrate anions on copper electrodeposition in ammonia media. Journal of the Electrochemical Society, 2001, 148(4): C315–C321
https://doi.org/10.1149/1.1357176
15 Grujicic D, Pesic  B. Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochimica Acta, 2005, 50(22): 4426–4443
https://doi.org/10.1016/j.electacta.2005.02.012
16 Schlesinger M, Paunovic  M. Fundamentals of Electrochemical Deposition. Hobken: Wiley, 2006
17 Jankovic A, Dundar  H, Mehta R . Relationships between comminution energy and product size for a magnetite ore. Journal of the South African Institute of Mining and Metallurgy, 2010, 110(3): 141–146
18 Xiao Y, Yang  Y, van den Berg J, Sietsma J ,  Agterhuis H ,  Visser G ,  Bol D. Hydrometallurgical recovery of copper from complex mixtures of end-of-life shredded ICT products. Hydrometallurgy, 2013, 140: 128–134
https://doi.org/10.1016/j.hydromet.2013.09.012
19 Sun Z, Xiao  Y, Sietsma J ,  Agterhuis H ,  Yang Y. A cleaner process for selective recovery of valuable metals from electronic waste of complex mixtures of end-of-life electronic products. Environmental Science & Technology, 2015, 49(13): 7981–7988
https://doi.org/10.1021/acs.est.5b01023
20 Meng X, Han  K N. The principles and applications of ammonia leaching of metals—A review. Mineral Processing and Extractive Metallurgy Review, 1996, 16(1): 23–61
https://doi.org/10.1080/08827509608914128
21 Birdi K. Handbook of Surface and Colloid Chemistry. Boca Raton: CRC Press, 2002
22 Majidi M, Asadpour-Zeynali  K, Hafezi B . Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode. Electrochimica Acta, 2009, 54(3): 1119–1126
https://doi.org/10.1016/j.electacta.2008.08.035
23 Grujicic D, Pesic  B. Electrodeposition of copper: The nucleation mechanisms. Electrochimica Acta, 2002, 47(18): 2901–2912
https://doi.org/10.1016/S0013-4686(02)00161-5
24 Darchen A, Drissi-Daoudi  R, Irzho A . Electrochemical investigations of copper etching by Cu(NH3)4Cl2 in ammoniacal solutions. Journal of Applied Electrochemistry, 1997, 27(4): 448–454
https://doi.org/10.1023/A:1018469805966
25 Khattab I A, Shaffei  M F, Shaaban  N A, Hussein  H S, Abd El-Rehim  S S. Study the kinetics of electrochemical removal of copper from dilute solutions using packed bed electrode. Egyptian Journal of Petroleum, 2014, 23(1): 93–103
https://doi.org/10.1016/j.ejpe.2014.02.013
26 Viswanatha S, George  S. Electrowinning of copper powder from copper sulphate solution in presence of glycerol and sulphuric acid. Indian Journal of Chemical Technology, 2011, 18(1): 37–44
27 Zoski C G. Handbook of Electrochemistry. Amsterdam: Elsevier, 2006
28 Katayama Y, Dan  S, Miura T ,  Kishi T . Electrochemical behavior of silver in 1-ethyl-3-methylimidazolium tetrafluoroborate molten salt. Journal of the Electrochemical Society, 2001, 148(2): C102–C105
https://doi.org/10.1149/1.1341243
29 Mahmudul H M, Elius  H M, Mamun  M A, Ehsan  M Q. Study of redox behavior of Cd(II) and interaction of Cd(II) with proline in the aqueous medium using cyclic voltammetry. Journal of Saudi Chemical Society, 2012, 16(2): 145–151
https://doi.org/10.1016/j.jscs.2011.06.006
30 Hinatsu J, Foulkes  F. Electrochemical kinetic parameters for the cathodic deposition of copper from dilute aqueous acid sulfate solutions. Canadian Journal of Chemical Engineering, 1991, 69(2): 571–577
https://doi.org/10.1002/cjce.5450690224
31 Bard A J, Faulkner  L R. Electrochemical methods: Fundamentals and applications. New York: Wiley, 1980
32 ,IbañezA, Fatas  E. Mechanical and structural properties of electrodeposited copper and their relation with the electrodeposition parameters. Surface and Coatings Technology, 2005, 191(1): 7–16
https://doi.org/10.1016/j.surfcoat.2004.05.001
[1] FCE-16014-of-SZ_suppl_1 Download
[1] Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding. Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts[J]. Front. Chem. Sci. Eng., 2021, 15(1): 138-147.
[2] Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed