Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (1) : 180-186    https://doi.org/10.1007/s11705-020-1917-x
RESEARCH ARTICLE
Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells
Yaqin Wang1, Lin Yang1, Chunxiang Dall’Agnese1, Gang Chen1, Ai-Jun Li2(), Xiao-Feng Wang1()
1. Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
2. College of Physics, Jilin University, Changchun 130012, China
 Download: PDF(1006 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

SnO2 has been proven to be an effective electron transport layer (ETL) material for perovskite solar cells (PSCs) owing to its excellent electrical and optical properties. Here, we introduce a viable spray coating method for the preparation of SnO2 films. Then, we employ a SnO2 film prepared using the spray coating method as an ETL for PSCs. The PSC based on the spray-coated SnO2 ETL achieves a power conversion efficiency of 17.78%, which is comparable to that of PSCs based on conventional spin-coated SnO2 films. The large-area SnO2 films prepared by spray coating exhibit good repeatability for device performance. This study shows that SnO2 films prepared by spray coating can be applied as ETLs for stable and high-efficiency PSCs. Because the proposed method involves low material consumption, it enables the low-cost and large-scale production of PSCs.

Keywords spray coating      SnO2 film      ETL      PSCs     
Corresponding Author(s): Ai-Jun Li,Xiao-Feng Wang   
Online First Date: 16 March 2020    Issue Date: 12 January 2021
 Cite this article:   
Yaqin Wang,Lin Yang,Chunxiang Dall’Agnese, et al. Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells[J]. Front. Chem. Sci. Eng., 2021, 15(1): 180-186.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1917-x
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I1/180
Fig.1  SEM images of SnO2 films prepared by (a) spray coating and (b) spin coating.
Fig.2  AFM images of SnO2 films prepared by (a,b) spray coating and (c,d) spin coating.
Fig.3  XRD patterns of perovskite films deposited on SnO2 films prepared by different methods.
Fig.4  J-V curves of PSCs based on SnO2 prepared at different spraying times.
Spraying time/s Jsc/(mA·cm?2) Voc/V FF PCE/% Rs/W
10 21.61±0.35 1.134±0.009 0.592±0.025 15.42±0.50 240
20 23.35±0.50 1.144±0.010 0.666±0.030 17.78±0.42 156
30 21.69±0.45 1.159±0.011 0.642±0.028 16.14±0.39 196
40 22.03±0.48 1.145±0.011 0.616±0.035 15.73±0.56 233
50 22.51±0.45 1.143±0.010 0.559±0.040 14.37±0.58 266
Tab.1  Photovoltaic parameters of devices based on SnO2 prepared at different spraying times
Fig.5  (a) J-V curves and (b) EQE of PSCs based on SnO2 prepared by spin coating and spray coating.
Item Jsc/(mA·cm−2) Voc/V FF PCE/% Rs/W
Spin coating 22.80±0.48 1.156±0.010 0.679±0.030 17.90±0.39 160
Spray coating 23.35±0.50 1.144±0.010 0.666±0.030 17.78±0.42 156
Tab.2  Photovoltaic parameters of PSCs based on SnO2 prepared by spin coating and spray coating for 20 s
Fig.6  Stability test of devices without any encapsulation.
Fig.7  PCEs of twelve PSCs based on the same batch of spray-coated SnO2 films under the same conditions.
1 M A Green, A Ho-Baillie, H J Snaith. The emergence of perovskite solar cells. Nature Photonics, 2014, 8(7): 506–514
https://doi.org/10.1038/nphoton.2014.134
2 A Kojima, K Teshima, Y Shirai, T Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
https://doi.org/10.1021/ja809598r
3 H S Kim, S H Im, N G Park. Organolead halide perovskite: New horizons in solar cell research. Journal of Physical Chemistry C, 2014, 118(11): 5615–5625
https://doi.org/10.1021/jp409025w
4 M M Lee, J Teuscher, T Miyasaka, T N Murakami, H J Snaith. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643–647
https://doi.org/10.1126/science.1228604
5 J H Heo, S H Im, J H Noh, T N Mandal, C S Lim, J A Chang, Y H Lee, H J Kim, A Sarkar, M K Nazeeruddin, et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7(6): 486–491
https://doi.org/10.1038/nphoton.2013.80
6 J Huang, Y Shao, Q Dong. Organometal trihalide perovskite single crystals: A next wave of materials for 25% efficiency photovoltaics and applications beyond? Journal of Physical Chemistry Letters, 2015, 6(16): 3218–3227
https://doi.org/10.1021/acs.jpclett.5b01419
7 H J Snaith. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630
https://doi.org/10.1021/jz4020162
8 J Burschka, N Pellet, S J Moon, R Humphry-Baker, P Gao, M K Nazeeruddin, M Gratzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319
https://doi.org/10.1038/nature12340
9 S Kazim, M K Nazeeruddin, M Gratzel, S Ahmad. Perovskite as light harvester: A game changer in photovoltaics. Angewandte Chemie International Edition in English, 2014, 53(11): 2812–2824
https://doi.org/10.1002/anie.201308719
10 Z Wei, H Chen, K Yan, S Yang. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angewandte Chemie International Edition in English, 2014, 53(48): 13239–13243
https://doi.org/10.1002/anie.201408638
11 J Zheng, M Zhang, C F J Lau, X Deng, J Kim, Q Ma, C Chen, M A Green, S Huang, A Ho-Baillie. Spin-coating free fabrication for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 168: 165–171
https://doi.org/10.1016/j.solmat.2017.04.029
12 J X Song, E Q Zheng, J Bian, X F Wang, W Tian, Y Sanehira, T Miyasaka. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(20): 10837–10844
https://doi.org/10.1039/C5TA01207D
13 J X Song, E Q Zheng, X F Wang, W Tian, T Miyasaka. Low-temperature-processed ZnO-SnO2 nanocomposite for efficient planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 144: 623–630
https://doi.org/10.1016/j.solmat.2015.09.054
14 L B Xiong, M C Qin, C Chen, J Wen, G Yang, Y X Guo, J J Ma, Q Zhang, P L Qin, S Z Li, et al. Fully high-temperature-processed SnO2 as blocking layer and scaffold for efficient, stable, and hysteresis-free mesoporous perovskite solar cells. Advanced Functional Materials, 2018, 28(10): 1706276
https://doi.org/10.1002/adfm.201706276
15 K H Jung, J Y Seo, S Lee, H Shin, N G Park. Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(47): 24790–24803
https://doi.org/10.1039/C7TA08040A
16 K Mahmood, B S Swain, A R Kirmani, A Amassian. Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(17): 9051–9057
https://doi.org/10.1039/C4TA04883K
17 J X Song, L Liu, X F Wang, G Chen, W Tian, T Miyasaka. Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13439–13447
https://doi.org/10.1039/C7TA03331A
18 J X Song, J Bian, E Q Zheng, X F Wang, W J Tian, T Miyasaka. Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer. Chemistry Letters, 2015, 44(5): 610–612
https://doi.org/10.1246/cl.150056
19 B J Kim, D H Kim, Y Y Lee, H W Shin, G S Han, J S Hong, K Mahmood, T K Ahn, Y C Joo, K S Hong, et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy & Environmental Science, 2015, 8(3): 916–921
https://doi.org/10.1039/C4EE02441A
20 J H Heo, H J Han, D Kim, T K Ahn, S H Im. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015, 8(5): 1602–1608
https://doi.org/10.1039/C5EE00120J
21 J B You, Z R Hong, Y Yang, Q Chen, M Cai, T B Song, C C Chen, S R Lu, Y S Liu, H P Zhou, Y Yang. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8(2): 1674–1680
https://doi.org/10.1021/nn406020d
22 Y Guo, X Yin, J Liu, W Chen, S Wen, M Que, H Xie, Y Yang, W Que, B Gao. Vacuum thermal-evaporated SnO2 as uniform electron transport layer and novel management of perovskite intermediates for efficient and stable planar perovskite solar cells. Organic Electronics, 2019, 65: 207–214
https://doi.org/10.1016/j.orgel.2018.11.021
23 K Mahmood, A Khalid, F Nawaz, M T Mehran. Low-temperature electrospray-processed SnO2 nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells. Journal of Colloid and Interface Science, 2018, 532: 387–394
https://doi.org/10.1016/j.jcis.2018.08.009
24 M F Mohamad Noh, N A Arzaee, J Safaei, N A Mohamed, H P Kim, A R Mohd Yusoff, J Jang, M A Mat Teridi. Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells. Journal of Alloys and Compounds, 2019, 773: 997–1008
https://doi.org/10.1016/j.jallcom.2018.09.273
25 A S Subbiah, N Mathews, S Mhaisalkar, S K Sarkar. Novel plasma-assisted low-temperature-processed SnO2 thin films for efficient flexible perovskite photovoltaics. ACS Energy Letters, 2018, 3(7): 1482–1491
https://doi.org/10.1021/acsenergylett.8b00692
26 L Huang, X Sun, C Li, J Xu, R Xu, Y Du, J Ni, H Cai, J Li, Z Hu, J Zhang. UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells. ACS Applied Materials & Interfaces, 2017, 9(26): 21909–21920
https://doi.org/10.1021/acsami.7b04392
27 M Ayadi, O Benhaoua, M Sebais, O Halimi, B Boudine, M S Aida. Effect of cerium doping on the structural, optical and photocatalytic properties of SnO2 thin films prepared by spray pyrolysis method. Materials Research Express, 2019, 6(7): 076407
https://doi.org/10.1088/2053-1591/ab10c5
28 S Palanichamy, J R Mohamed, P S S Kumar, S Pandiarajan, L Amalraj. Physical properties of nebulized spray pyrolysised SnO2 thin films at different substrate temperature. Applied Physics. A, Materials Science & Processing, 2018, 124(9): 643
https://doi.org/10.1007/s00339-018-2065-8
29 B Benhaoua, S Abbas, A Rahal, A Benhaoua, M S Aida. Effect of film thickness on the structural, optical and electrical properties of SnO2: F thin films prepared by spray ultrasonic for solar cells applications. Superlattices and Microstructures, 2015, 83: 78–88
https://doi.org/10.1016/j.spmi.2015.03.017
30 Y Y Jiang, C C Wu, L R Li, K Wang, Z Tao, F Gao, W F Cheng, J T Cheng, X Y Zhao, S Priya, et al. All electrospray printed perovskite solar cells. Nano Energy, 2018, 53: 440–448
https://doi.org/10.1016/j.nanoen.2018.08.062
31 E Elangovan, K Ramamurthi. Studies on micro-structural and electrical properties of spray-deposited fluorine-doped tin oxide thin films from low-cost precursor. Thin Solid Films, 2005, 476(2): 231–236
https://doi.org/10.1016/j.tsf.2004.09.022
32 B Thangaraju. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor. Thin Solid Films, 2002, 402(1-2): 71–78
https://doi.org/10.1016/S0040-6090(01)01667-4
33 D İskenderoğlu, H Guney. Effect of mg dopant on SnO2 thin films grown by spray pyrolysis technique. Modern Physics Letters B, 2019, 33(4): 1950030
https://doi.org/10.1142/S0217984919500301
34 S Palanichamy, J R Mohamed, P S S Kumar, S Pandiarajan, L Amalraj. Volume of precursor solution effect on the properties of SnO2 thin films prepared by nebulized spray pyrolysis technique. Optical and Quantum Electronics, 2018, 50(9): 346
https://doi.org/10.1007/s11082-018-1611-0
35 S Palanichamy, J R Mohamed, K D A Kumar, M Anitha, S Pandiarajan, L Amalraj. Effect of molar concentration on physical properties of spraydeposited SnO2 thin films using nebulizer. Journal of Sol-Gel Science and Technology, 2019, 89(2): 392–402
https://doi.org/10.1007/s10971-018-4894-5
36 A Abdelkrim, S Rahmane, K Nabila, A Hafida, O Abdelouahab. Polycrystalline SnO2 thin films grown at different substrate temperature by pneumatic spray. Journal of Materials Science Materials in Electronics, 2017, 28(6): 4772–4779
https://doi.org/10.1007/s10854-016-6122-9
37 T Dhandayuthapani, R Sivakumar, R Ilangovan, C Gopalakrishnan, C Sanjeeviraja, K Jeyadheepan. Eco-friendly nebulized spray deposition of bifunctional anatase TiO2 thin films exhibiting multicolor switching and efficient NH3 gas sensing at room temperature. Materials Research Express, 2019, 6(6): 065053
https://doi.org/10.1088/2053-1591/ab0e38
[1] FCE-19068-OF-WY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed