Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (5) : 802-812    https://doi.org/10.1007/s11705-019-1866-4
RESEARCH ARTICLE
Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time
Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma()
Key Laboratory for Green Chemical Technology of Ministry of Education Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(2509 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Fischer–Tropsch synthesis (FTS) continues to be an attractive alternative for producing a broad range of fuels and chemicals through the conversion of syngas (H2 and CO), which can be derived from various sources, such as coal, natural gas, and biomass. Among iron carbides, Fe2C, as an active phase, has barely been studied due to its thermodynamic instability. Here, we fabricated a series of Fe2C embedded in hollow carbon sphere (HCS) catalysts. By varying the crystallization time, the shell thickness of the HCS was manipulated, which significantly influenced the catalytic performance in the FTS. To investigate the relationship between the geometric structure of the HCS and the physic-chemical properties of Fe species, transmission electron microscopy, X-ray diffraction, N2 physical adsorption, X-ray photoelectron spectroscopy, hydrogen temperature-programmed reduction, Raman spectroscopy, and Mössbauer spectroscopy techniques were employed to characterize the catalysts before and after the reaction. Evidently, a suitable thickness of the carbon layer was beneficial for enhancing the catalytic activity in the FTS due to its high porosity, appropriate electronic environment, and relatively high Fe2C content.

Keywords Fischer–Tropsch synthesis      Fe-based catalyst      Fe2C      hollow carbon sphere      crystallization time     
Corresponding Author(s): Xinbin Ma   
Just Accepted Date: 15 November 2019   Online First Date: 02 January 2020    Issue Date: 25 May 2020
 Cite this article:   
Yifei Wang,Shouying Huang,Xinsheng Teng, et al. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1866-4
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I5/802
Fig.1  TEM images, the STD histograms, and the PSD histograms of the (a) Fe/HCS-12, (b) Fe/HCS-24, (c) Fe/HCS-36, and (d) Fe/HCS-48 catalysts.
Catalyst Shell thicknessa)
/nm
Particle sizea)
/nm
Feb)
/wt-%
Fe surface c)
/wt-%
SBETd)
/(m2·g?1)
Smicroe)
/(m2·g?1)
Smesoe)
/(m2·g?1)
Vmicroe)
/(cm3·g?1)
Vmesof)
/(cm3·g?1)
Fe/HCS-12 9.2±1.4 8.7±1.2 17.6 18.4 433 179 253 0.082 0.430
Fe/HCS-24 19.4±1.7 7.6±1.3 16.4 15.0 535 209 325 0.095 0.647
Fe/HCS-36 28.3±2.3 7.0±0.9 16.7 13.4 655 314 341 0.144 0.688
Fe/HCS-48 37.4±2.7 6.4±1.1 16.6 10.3 557 242 315 0.111 0.515
Tab.1  Shell thickness, particle size, Fe content, and textual properties of the Fe/HCS catalysts
Fig.2  XRD patterns of the Fe/HCS catalysts.
Fig.3  (a) N2 physisorption isotherms and (b) pore-size distribution of the Fe/HCS catalysts.
Fig.4  XPS spectra of the Fe/HCS catalysts.
Fig.5  H2-TPR of the Fe/HCS catalysts.
Fig.6  CO conversion with time on stream of the Fe/HCS catalysts.
Catalyst FTY/(10?6 molco·gFe?1·S?1) CO conv./% CO2 sel./% Selectivity/% O/Pc)
CH4 C2–C4
paraffins
C2–C4
olefins
C5+ Oxyb)
Fe/HCS-12 122 22.5 43.0 13.7 6.4 24.4 52.6 2.9 3.8
Fe/HCS-24 296 49.8 41.7 12.4 6.2 24.0 53.9 3.5 3.9
Fe/HCS-36 319 53.8 40.8 12.9 6.7 26.3 51.3 2.8 3.9
Fe/HCS-48 259 43.0 40.3 9.2 4.2 19.9 63.9 2.8 4.7
Tab.2  FTS activity and selectivity of the Fe/HCS catalystsa)
Fig.7  The TEM images, HR-TEM images, and PSD of the used (a) Fe/HCS-12, (b) Fe/HCS-24, (c) Fe/HCS-36, and (d) Fe/HCS-48 catalysts.
Fig.8  XRD patterns of the used Fe/HCS catalysts.
Fig.9  Raman spectra of the used Fe/HCS catalysts.
Fig.10  57Fe Mössbauer spectrum of the used Fe/HCS catalysts.
Catalyst IS/(mm·s?1) QS/(mm·s?1) H/KOe A/% Phase
Fe/HCS-12 0.24 0.07 176 11.37 Fe2C
0.33 0.90 ? 60.98 Fe2+ /Fe3+
1.10 2.43 ? 27.65 Fe2+ (spm)
Fe/HCS-24 0.23 0.08 171 25.95 Fe2C
0.37 0.90 ? 50.80 Fe2+ /Fe3+
1.02 2.41 ? 23.25 Fe2+ (spm)
Fe/HCS-36 0.25 0.09 170 49.28 Fe/HCS-36
0.37 0.89 ? 37.12 Fe2+ /Fe3+
1.08 2.47 ? 13.60 Fe2+ (spm)
Fe/HCS-48 0.22 0.16 171 22.34 Fe2C
0.34 0.81 ? 44.92 Fe2+ /Fe3+
1.06 2.30 ? 32.74 Fe2+ (spm)
Tab.3  57Fe Mössbauer parameters of the used Fe/HCS catalysts
1 M E Dry. The Fischer-Tropsch process: 1950–2000. Catalysis Today, 2002, 71(3-4): 227–241
https://doi.org/10.1016/S0920-5861(01)00453-9
2 H M T Galvis, K P D de Jong. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catalysis, 2013, 3(9): 2130–2149
https://doi.org/10.1021/cs4003436
3 S S Ail, S Dasappa. Biomass to liquid transportation fuel via Fischer-Tropsch synthesis: Technology review and current scenario. Renewable & Sustainable Energy Reviews, 2016, 58: 267–286
https://doi.org/10.1016/j.rser.2015.12.143
4 L W Niu, X W Liu, X Liu, Z G Lv, C H Zhang, X D Wen, Y Yang, Y W Li, J Xu. In situ XRD study on promotional effect of potassium on carburization of spray-dried precipitated Fe2O3 Catalysts. ChemCatChem, 2017, 9(9): 1691–1700
https://doi.org/10.1002/cctc.201601665
5 Y Yong, S H Huang, H Y Wang, H Y Wang, Y F Wang, J Wang, J Lv, Z H Li, X B Ma. Monodisperse nano Fe3O4 on α-Al2O3 catalysts for Fischer-Tropsch synthesis to lower olefins promoter and size effects. ChemCatChem, 2017, 9(3): 3144–3152
6 W P Ma, G Jacobs, D E Sparks, J L S Klettlinger, C H Yen, B H Davis. Fischer-Tropsch synthesis and water gas shift kinetics for a precipitated iron catalyst. Catalysis Today, 2016, 275: 49–58
https://doi.org/10.1016/j.cattod.2016.01.006
7 E de Smit, B M Weckhuysen. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour. Chemical Society Reviews, 2008, 37(12): 2758–2781
https://doi.org/10.1039/b805427d
8 G Le Caer, J M Dubois, M Pijolat, V Perrichon, P Bussiere. Characterization by Möessbauer spectroscopy of iron carbides formed by Fischer-Tropsch synthesis. Journal of Physical Chemistry, 1982, 86(24): 4799–4808
https://doi.org/10.1021/j100221a030
9 S Zhao, X W Liu, C F Huo, Y W Li, J G Wang, H J Jiao. Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies. Catalysis Structure & Reactivity, 2015, 1(1): 44–60
https://doi.org/10.1179/2055075814Y.0000000007
10 E de Smit, F Cinquini, A M Beale, O V Safonova, W van Beek, P Sautet, B M Weckhuysen. Stability and reactivity of iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling µC. Journal of the American Chemical Society, 2010, 132(42): 14928–14941
https://doi.org/10.1021/ja105853q
11 M Manes, A D Damick, M Mentser, E M Cohn, L J E Hofer. Hexagonal iron carbide as an intermediate in the carbiding of iron Fischer-Tropsch catalysts 1,2. Journal of the American Chemical Society, 1952, 74(24): 6207–6209
https://doi.org/10.1021/ja01144a015
12 C F Huo, W Y Li, J Wang, H Jiao. Insight into CH4 formation in iron-catalyzed Fischer-Tropsch synthesis. Journal of the American Chemical Society, 2009, 131(41): 14713–14721
https://doi.org/10.1021/ja9021864
13 K Xu, Y Cheng, J Lin, H Wang, S H Xie, Y Pei, S R Yan, M H Qiao, Z H Li, B N Zong. Nanocrystalline iron-boron catalysts for low-temperature CO hydrogenation: Selective liquid fuel production and structure-activity correlation. Journal of Catalysis, 2016, 339: 102–110
https://doi.org/10.1016/j.jcat.2016.03.035
14 R P Mogorosi, N Fischer, M Claeys, E V Steen. Strong-metal-support interaction by molecular design: Fe-silicate interactions in Fischer-Tropsch catalysts. Journal of Catalysis, 2012, 289: 140–150
https://doi.org/10.1016/j.jcat.2012.02.002
15 K Xu, B Sun, J Lin, W Wen, Y Pei, S R Yan, M H Qiao, X X Zhang, B N Zong. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst. Nature Communications, 2014, 5(1): 57–83
https://doi.org/10.1038/ncomms6783
16 P Wang, W Chen, F K Chiang, A I Dugulan, Y Song, R Pestman, K Zhang, J Yao, B Feng, P Miao, W Xu, E J. HensenSynthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalyst. Science Advances, 2018, 4(10): 2947–2953
https://doi.org/10.1126/sciadv.aau2947
17 Y Cheng, J Lin, K Xu, H Wang, X Y Yao, Y Pei, S R Yan, M H Qiao, B N Zong. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide-supported iron catalysts. ACS Catalysis, 2016, 6(1): 389–399
https://doi.org/10.1021/acscatal.5b02024
18 H M Torres Galvis, J H Bitter, C B Khare, M Ruitenbeek, A I Dugulan, K P de Jong. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 335(6): 835–838
https://doi.org/10.1126/science.1215614
19 X P Zhou, J Ji, D Wang, X Duan, G Qiao, D Chen, X Zhou. Hierarchical structured α-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins. Chemical Communications, 2015, 51(42): 8853–8856
https://doi.org/10.1039/C5CC00786K
20 J Barrault, C Forquy, J C Menezo, R Maurel. Selective hydrocondensation of CO to light olefins with alumina-supported iron catalysts. Reaction Kinetics and Catalysis Letters, 1980, 15(2): 153–158
https://doi.org/10.1007/BF02062425
21 Q Chen, G Liu, S Ding, M Chanmiya Sheikh, D Long, Y Yoneyama, N Tsubaki. Design of ultra-active iron-based Fischer-Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity. Chemical Engineering Journal, 2018, 334: 714–724
https://doi.org/10.1016/j.cej.2017.10.093
22 F Jiang, M Zhang, B Liu, Y B Xu, X H Liu. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer-Tropsch synthesis: Understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation. Catalysis Science & Technology, 2017, 7(5): 1245–1265
https://doi.org/10.1039/C7CY00048K
23 J Z Lu, L J Yang, B L Xu, Q Wu, D Zhang, S J Yuan, Y Zhai, X Z Wang, Y N Fan, Z Hu. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins. ACS Catalysis, 2014, 4(2): 613–621
https://doi.org/10.1021/cs400931z
24 V P Santos, T A Wezendonk, J J Jaén, A Dugulan, M Nasalevich, H Islam, A Chojecki, S Sartipi, X Sun, A Hakeem, et al.. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nature Communications, 2015, 6(1): 64–51
https://doi.org/10.1038/ncomms7451
25 X S Teng, S Y Huang, J Wang, H Y Wang, Q Zhao, Y Yuan, X B Ma. Fabrication of Fe2C embedded in hollow carbon spheres: A high-performance and stable catalyst for Fischer-Tropsch synthesis. ChemCatChem, 2018, 10(17): 3883–3891
https://doi.org/10.1002/cctc.201800488
26 D W Yao, Y Wang, Y Li, Y J Zhao, J Lv, X B Ma. A high-performance nanoreactor for carbon-oxygen bonds hydrogenation reactions achieved by the morphology of nanotube-assembled hollow sphere. ACS Catalysis, 2017, 8(2): 1218–1226
https://doi.org/10.1021/acscatal.7b03026
27 Z P Zhang, W W Dai, X C Xu, J Zhang, B F Shi, J Xu, W F Tu, Y F Han. MnOx promotional effects on olefins synthesis directly from syngas over bimetallic FeMnOx/SiO2 catalysts. AIChE Journal. American Institute of Chemical Engineers, 2017, 63(10): 4451–4464
https://doi.org/10.1002/aic.15796
28 Z C Tao, Y Yang, C H Zhang, T Z Li, M Y Ding, H W Xiang, Y W Li. Study of manganese promoter on a precipitated iron-based catalyst for Fischer-Tropsch synthesis. Journal of Natural Gas Chemistry, 2007, 16(3): 278–285
https://doi.org/10.1016/S1003-9953(07)60060-7
29 M Oschatz, T W van Deelen, J L Weber, W S Lamme, G Wang, B Goderis, O Verkinderen, A I Dugulan, K P de Jong. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas. Catalysis Science & Technology, 2016, 6(24): 8464–8473
https://doi.org/10.1039/C6CY01251E
30 A C Ferrari, J Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review. B, 2000, 61(20): 14095–14107
https://doi.org/10.1103/PhysRevB.61.14095
31 B Yan, S Y Huang, S P Wang, X B Ma. Catalytic oxidative carbonylation over Cu2O nanoclusters supported on carbon materials: The role of the carbon support. ChemCatChem, 2015, 6(9): 2671–2679
https://doi.org/10.1002/cctc.201402201
32 T Z Li, H L Wang, Y Yang, H W Xiang, Y W Li. Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis. Journal of Energy Chemistry, 2013, 22(4): 624–632
https://doi.org/10.1016/S2095-4956(13)60082-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed