|
|
Problems, potentials and future of industrial crystallization |
J. Ulrich( ), P. Frohberg |
Center for Engineering Science, Thermal Process Engineering, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany |
|
|
Abstract This review discusses important research developments and arising challenges in the field of industrial crystallization with an emphasis on recent problems. The most relevant areas of research have been identified. These are the prediction of phase diagrams; the prediction of effects of impurities and additives; the design of fluid dynamics; the process control with process analytical technologies (PAT) tools; the polymorph and solvate screening; the stabilization of non-stable phases; and the product design. The potential of industrial crystallization in various areas is outlined and discussed with particular reference to the product quality, process design, and control. On this basis, possible future directions for research and development have been pointed out to highlight the importance of crystallization as an outstanding technique for separation, purification as well as for product design.
|
Keywords
industrial crystallization
potentials and future
product design
|
Corresponding Author(s):
Ulrich J.,Email:joachim.ulrich@iw.uni-halle.de
|
Issue Date: 05 March 2013
|
|
1 |
Chen J, Sarma B, Evans J M B, Myerson A S. Pharmaceutical Crystallization. Crystal Growth & Design , 2011, 11(4): 887–895 doi: 10.1021/cg101556s
|
2 |
Ulrich J. Solution crystallization—developments and new trends. Chemical Engineering & Technology , 2003, 26(8): 832–835 doi: 10.1002/ceat.200300003
|
3 |
Kroupa A. Modelling of phase diagrams and thermodynamic properties using Calphad method—development of thermodynamic databases. Computational Materials Science (in press)
|
4 |
Xiong H, Huang Z, Wu Z, Conway P P. A generalized computational interface for combined thermodynamic and kinetic modeling. Calphad , 2011, 35(3): 391–395 doi: 10.1016/j.calphad.2011.05.004
|
5 |
Jung I H, Kim J. Thermodynamic modeling of the Mg-Ge-Si, Mg–Ge–Sn, Mg–Pb–Si and Mg–Pb–Sn systems. Journal of Alloys and Compounds , 2010, 494(1-2): 137–147 doi: 10.1016/j.jallcom.2010.01.045
|
6 |
Al-Jibbouri S, Strege C, Ulrich J. Crystallization kinetics of epsomite influenced by pH-value and impurities. Journal of Crystal Growth , 2002, 236(1-3): 400–406 doi: 10.1016/S0022-0248(01)02172-8
|
7 |
Sangwal K. On the nature of supersaturation barriers observed during the growth of crystals from aqueous solutions containing impurities. Journal of Crystal Growth , 2002, 242(1-2): 215–228 doi: 10.1016/S0022-0248(02)01326-X
|
8 |
Buchfink R, Schmidt C, Ulrich J. Fe3+ as an example of the effect of trivalent additives on the crystallization of inorganic compounds, here ammonium sulfate. CrystEngComm , 2011, 13(4): 1118–1122 doi: 10.1039/c0ce00107d
|
9 |
Dang L, Wei H, Wang J. Effects of ionic impurities (Fe2+ and SO42-) on the crystal growth and morphology of phosphoric acid hemihydrate during batch crystallization. Industrial & Engineering Chemistry Research , 2007, 46(10): 3341–3347 doi: 10.1021/ie0614881
|
10 |
Févotte F, Févotte G. A method of characteristics for solving population balance equations (PBE) describing the adsorption of impurities during crystallization processes. Chemical Engineering Science , 2010, 65(10): 3191–3319 doi: 10.1016/j.ces.2010.02.009
|
11 |
Schmidt C, Ulrich J. Morphology prediction of crystals grown in the presence of impurities and solvents—an evaluation of the state of the art. Journal of Crystal Growth , 2012, 353(1): 168–173 doi: 10.1016/j.jcrysgro.2012.05.001
|
12 |
Lu J J, Ulrich J. Improved understanding of molecular modeling—the importance of additive incorporation. Journal of Crystal Growth , 2004, 270(1-2): 203–210 doi: 10.1016/j.jcrysgro.2004.06.010
|
13 |
Nieh?rster S, Ulrich J. Designing Crystal Morphology by a Simple Approach. Crystal Research and Technology , 1995, 30(3): 389–395 doi: 10.1002/crat.2170300319
|
14 |
Winn D, Doherty M F. A new technique for predicting the shape of solution-grown organic crystals. AlChE J , 1998, 44(11): 2501–2514 doi: 10.1002/aic.690441117
|
15 |
Schmidt C, Ulrich J. Crystal habit prediction—including the liquid as well as the solid side. Crystal Research and Technology , 2012, 47(6): 597–602 doi: 10.1002/crat.201100609
|
16 |
Jones A, Rigopoulos S, Zauner R. Crystallization and precipitation engineering. Computers & Chemical Engineering , 2005, 29(6): 1159–1166 doi: 10.1016/j.compchemeng.2005.02.022
|
17 |
Rielly C D, Marquis A J. A particle's eye view of crystallizer fluid mechanics. Chemical Engineering Science , 2001, 56(7): 2475–2493 doi: 10.1016/S0009-2509(00)00457-7
|
18 |
Kramer H J M, Dijkstra J W, Verheijen P J T, Van Rosmalen G M. Modeling of industrial crystallizers for control and design purposes. Powder Technology , 2000, 108(2-3): 185–191 doi: 10.1016/S0032-5910(99)00219-3
|
19 |
Kulikov V, Briesen H, Marquardt W. A framework for the simulation of mass crystallization considering the effect of fluid dynamics. Chemical Engineering and Processing , 2006, 45(10): 886–899 doi: 10.1016/j.cep.2005.09.008
|
20 |
Kulikov V, Briesen H, Marquardt W. Scale integration for the coupled simulation of crystallization and fluid dynamics. Chemical Engineering Research & Design , 2005, 83(6): 706–717 doi: 10.1205/cherd.04363
|
21 |
Sha Z, Palosaari S. Mixing and crystallization in suspensions. Chemical Engineering Science , 2000, 55(10): 1797–1806 doi: 10.1016/S0009-2509(99)00458-3
|
22 |
Kougoulos E, Jones A G, Wood-Kaczmar M W. Process modelling tools for continuous and batch organic crystallization processes including application to scale-up. Organic Process Research & Development , 2006, 10(4): 739–750 doi: 10.1021/op060039+
|
23 |
Wei H Y. Computer-aided design and scale-up of crystallization processes: integrating approaches and case studies. Chemical Engineering Research & Design , 2010, 88(10): 1377–1380 doi: 10.1016/j.cherd.2009.07.020
|
24 |
Kougoulos E, Jones A G, Wood-Kaczmar M. CFD modelling of mixing and heat transfer in batch cooling crystallizers: aiding the development of a hybrid predictive compartmental model. Chemical Engineering Research & Design , 2005, 83(1): 30–39 doi: 10.1205/cherd.04080
|
25 |
Essemiani K, de Traversay C, Gallot J C. Computational-fluid-dynamics (CFD) modelling of an industrial crystallizer: application to the forced-circulation reactor. Biotechnology and Applied Biochemistry , 2004, 40(Pt 3): 235–241 doi: 10.1042/BA20030221 pmid:15139855
|
26 |
Chew W, Sharratt P. Trends in process analytical technology. Anal Methods , 2010, 2(10): 1412–1438 doi: 10.1039/c0ay00257g
|
27 |
Chen Z, Lovett D, Morris J. Process analytical technologies and real time process control a review of some spectroscopic issues and challenges. Journal of Process Control , 2011, 21(10): 1467–1482 doi: 10.1016/j.jprocont.2011.06.024
|
28 |
Birch M, Fussell S J, Higginson P D, McDowall N, Marziano I. Towards a PAT-Based strategy for crystallization development. Organic Process Research & Development , 2005, 9(3): 360–364 doi: 10.1021/op0500077
|
29 |
Yu L X, Lionberger R A, Raw A S, D’Costa R, Wu H, Hussain A S. Applications of process analytical technology to crystallization processes. Advanced Drug Delivery Reviews , 2004, 56(3): 349–369 doi: 10.1016/j.addr.2003.10.012 pmid:14962586
|
30 |
Kail N, Marquardt W, Briesen H. Process analysis by means of focused beam reflectance measurements. Industrial & Engineering Chemistry Research , 2009, 48(6): 2936–2946 doi: 10.1021/ie800839s
|
31 |
Borissova A, Khan S, Mahmud T, Roberts K J, Andrews J, Dallin P, Chen Z P, Morris J. In situ measurement of solution concentration during the batch cooling crystallization of l-glutamic acid using ATR-FTIR spectroscopy coupled with chemometrics. Crystal Growth & Design , 2009, 9(2): 692–706 doi: 10.1021/cg7010265
|
32 |
Saleemi A N, Steele G, Pedge N I, Freeman A, Nagy Z K. Enhancing crystalline properties of a cardiovascular active pharmaceutical ingredient using a process analytical technology based crystallization feedback control strategy. International Journal of Pharmaceutics , 2012, 430(1-2): 56–64 doi: 10.1016/j.ijpharm.2012.03.029 pmid:22449455
|
34 |
Jia C Y, Yin Q X, Zhang M J, Wang J K, Shen Z H. Polymorphic transformation of pravastatin sodium monitored using combined online FBRM and PVM. Organic Process Research & Development , 2008, 12(6): 1223–1228 doi: 10.1021/op8001257
|
35 |
Pertig D, Buchfink R, Petersen S, Stelzer T, Ulrich J. Inline analyzing of industrial crystallization processes by an innovative ultrasonic probe technique. Chemical Engineering & Technology , 2011, 34(4): 639–646 doi: 10.1002/ceat.201000558
|
36 |
Purohit R, Venugopalan P. Polymorphism: an overview. Reson , 2009, 14(9): 882–893 doi: 10.1007/s12045-009-0084-7
|
37 |
Sarma B, Chen J, Hsi H Y, Myerson A S. Solid forms of pharmaceuticals: polymorphs, salts and cocrystals. Korean J Chem Eng , 2011, 28(2): 315–322 doi: 10.1007/s11814-010-0520-0
|
38 |
Yu Z Q, Chew J W, Chow P S, Tan R B H. Recent advances in crystallization control: an industrial perspective. Chemical Engineering Research & Design , 2007, 85(7): 893–905 doi: 10.1205/cherd06234
|
39 |
Yu L, Reutzel-Edens S M, Mitchell C A. Crystallization and polymorphism of conformationally flexible molecules: problems, patterns, and strategies. Organic Process Research & Development , 2000, 4(5): 396–402 doi: 10.1021/op000028v
|
40 |
Mangin D, Puel F, Veesler S. Polymorphism in processes of crystallization in solution: a practical review. Organic Process Research & Development , 2009, 13(6): 1241–1253 doi: 10.1021/op900168f
|
41 |
Lee A Y, Erdemir D, Myerson A S. Crystal polymorphism in chemical process development. Chem Biomol Eng , 2011, 2(1): 259–280 doi: 10.1146/annurev-chembioeng-061010-114224 pmid:22432619
|
42 |
Aaltonen J, Alles? M, Mirza S, Koradia V, Gordon K C, Rantanen J. Solid form screening—a review. European Journal of Pharmaceutics and Biopharmaceutics , 2009, 71(1): 23–37 doi: 10.1016/j.ejpb.2008.07.014 pmid:18715549
|
43 |
Févotte G. In situ Raman spectroscopy for in-line control of pharmaceutical crystallization and solids elaboration processes: a review. Chemical Engineering Research & Design , 2007, 85(7): 906–920 doi: 10.1205/cherd06229
|
44 |
Parmar M M, Khan O, Seton L, Ford J L. Polymorph selection with morphology control using solvents. Crystal Growth & Design , 2007, 7(9): 1635–1642 doi: 10.1021/cg070074n
|
45 |
Capes J S, Cameron R E. Contact line crystallization to obtain metastable polymorphs. Crystal Growth & Design , 2006, 7(1): 108–112 doi: 10.1021/cg0605988
|
46 |
Zencirci N, Gelbrich T, Kahlenberg V, Griesser U J. Crystallization of metastable polymorphs of phenobarbital by isomorphic seeding. Crystal Growth & Design , 2009, 9(8): 3444–3456 doi: 10.1021/cg801416a
|
47 |
Gu C H, Chatterjee K, Young V Jr, Grant D J W. Stabilization of a metastable polymorph of sulfamerazine by structurally related additives. Journal of Crystal Growth , 2002, 235(1-4): 471–481 doi: 10.1016/S0022-0248(01)01784-5
|
48 |
Rohani S, Horne S, Murthy K. Control of product quality in batch crystallization of pharmaceuticals and fine chemicals. Part 1: Design of the crystallization process and the effect of solvent. Organic Process Research & Development , 2005, 9(6): 858–872 doi: 10.1021/op050049v
|
49 |
Kramer H J M, Bermingham S K, van Rosmalen G M. Design of industrial crystallisers for a given product quality. Journal of Crystal Growth , 1999, 198-199(1): 729–737 doi: 10.1016/S0022-0248(98)01179-8
|
50 |
Vatamanu J, Kusalik P G. Observation of two-step nucleation in methane hydrates. Physical Chemistry Chemical Physics , 2010, 12(45): 15065–15072 doi: 10.1039/c0cp00551g pmid:20957258
|
51 |
Huang F, Zhang H, Banfield J F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Letters , 2003, 3(3): 373–378 doi: 10.1021/nl025836+
|
52 |
Penn R L, Tanaka K, Erbs J. Size dependent kinetics of oriented aggregation. Journal of Crystal Growth , 2007, 309(1): 97–102 doi: 10.1016/j.jcrysgro.2007.09.011
|
53 |
Penn R L. Kinetics of Oriented Aggregation. Journal of Physical Chemistry B , 2004, 108(34): 12707–12712 doi: 10.1021/jp036490+
|
54 |
Stelzer T, Ulrich J. No product design without process design (control)? Chemical Engineering & Technology , 2010, 33(5): 723–729 doi: 10.1002/ceat.200900478
|
55 |
Stelzer T, Ulrich J. Crystallization a tool for product design. Adv Powder Technol , 2010, 21(3): 227–234 doi: 10.1016/j.apt.2010.04.006
|
56 |
Nagy Z K. Model based robust control approach for batch crystallization product design. Computers & Chemical Engineering , 2009, 33(10): 1685–1691 doi: 10.1016/j.compchemeng.2009.04.012
|
57 |
Ulrich J, Schuster A, Stelzer T. Crystalline coats or hollow crystals as tools for product design in pharmaceutical industry. Journal of Crystal Growth , 2013, 362(1): 235–237 doi: 10.1016/j.jcrysgro.2011.10.060
|
58 |
Schuster A, Stelzer T, Ulrich J. Generation of crystalline hollow needles: new approach by liquid-liquid phase transformation. Chemical Engineering & Technology , 2011, 34(4): 599–603 doi: 10.1002/ceat.201000511
|
59 |
R?mbach E, Ulrich J. Self-controlled coating process for drugs. Crystal Growth & Design , 2007, 7(9): 1618–1622 doi: 10.1021/cg070071a
|
60 |
Nagy Z K, Braatz R D. Robust nonlinear model predictive control of batch processes. AlChE J , 2003, 49(7): 1776–1786 doi: 10.1002/aic.690490715
|
61 |
Nagy Z K, Braatz R D. Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis. Journal of Process Control , 2004, 14(4): 411–422 doi: 10.1016/j.jprocont.2003.07.004
|
62 |
Hermanto M W, Chiu M S, Woo X Y, Braatz R D. Robust optimal control of polymorphic transformation in batch crystallization. AlChE J , 2007, 53(10): 2643–2650 doi: 10.1002/aic.11266
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|