|
|
Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer |
Xingfu SONG( ), Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU |
National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract Magnesium hydroxide is an important chemical, and is usually obtained from seawater or brine via precipitation process. The particle size distribution of magnesium hydroxide has great effects on the subsequent filtration and drying processes. In this paper, micron-sized magnesium hydroxide with high purity, large particle size and low water content in filter cake was synthesized via simple wet precipitation in a mixed suspension mixed product removal (MSMPR) crystallizer. The effects of reactant concentration, residence time and impurities on the properties of magnesium hydroxide were investigated by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Malvern laser particle size analyzer. The results show that NaOH concentration and residence time have great effects on the water content and particle size of Mg(OH)2. The spherical Mg(OH)2 with uniform diameter of about 30 μm was obtained with purity higher than 99% and water content less than 31%. Furthermore, the crystallization kinetics based on the population balance theory was studied to provide the theoretical data for industrial enlargement, and the simulation coefficients (R2) based on ASL model and C-R model are 0.9962 and 0.9972, respectively, indicating that the crystal growth rate of magnesium hydroxide can be well simulated by the size-dependent growth models.
|
Keywords
magnesium hydroxide
precipitation
micron-sized
crystallization kinetics
|
Corresponding Author(s):
SONG Xingfu,Email:xfsong@ecust.edu.cn
|
Issue Date: 05 June 2013
|
|
1 |
Tai C, Li R K Y. Studies on the impact fracture behaviour of flame retardant polymeric material. Materials & Design , 2001, 22(1): 15–19 doi: 10.1016/S0261-3069(00)00029-7
|
2 |
Chen X L, Yu J, Guo S Y. Structure and properties of polypropylene composites filled with magnesium hydroxide. Journal of Applied Polymer Science , 2006, 102(5): 4943–4951 doi: 10.1002/app.24938
|
3 |
Cao H Q, Zheng H, Yin J F, Lu Y X, Wu S S, Wu X M, Li B J. Mg(OH)2 Complex Nanostructures with Superhydrophobicity and Flame Retardant Effects. Journal of Physical Chemistry C , 2010, 114(41): 17362–17368 doi: 10.1021/jp107216z
|
4 |
Gui H, Zhang X H, Dong W F, Wang Q G, Gao J M, Song Z H, Lai J M, Liu Y Q, Huang F, Qiao J L. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites. Polymer , 2007, 48(9): 2537–2541 doi: 10.1016/j.polymer.2007.03.019
|
5 |
Zhang S N, Cheng F Y, Tao Z L, Gao F, Chen J. Removal of nickel ions from wastewater by Mg(OH)2/MgO nanostructures embedded in Al2O3 membranes. Journal of Alloys and Compounds , 2006, 426(1-2): 281–285 doi: 10.1016/j.jallcom.2006.01.095
|
6 |
Béarat H, McKelvy M J, Chizmeshya A V G, Sharma R, Carpenter R W. Magnesium hydroxide dehydroxylation/carbonation reaction processes: implications for carbon dioxide mineral sequestration. Journal of the American Ceramic Society , 2002, 85(4): 742–748 doi: 10.1111/j.1151-2916.2002.tb00166.x
|
7 |
Kang J C, Schwendeman S P. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly (D,L-lactide-co-glycolide) implants. Biomaterials , 2002, 23(1): 239–245 doi: 10.1016/S0142-9612(01)00101-6
|
8 |
Kakaraniya S, Kari C, Verma R, Mehra A. Gas Absorption in Slurries of Fine Particles: SO2-Mg(OH)2-MgSO3 System. Industrial & Engineering Chemistry Research , 2007, 46(7): 1904–1913 doi: 10.1021/ie061461h
|
9 |
Olanders B, Stroemberg D. Reduction of nitric oxide over magnesium oxide and dolomite at fluidized bed conditions. Energy & Fuels , 1995, 9(4): 680–684 doi: 10.1021/ef00052a016
|
10 |
Yan L, Zhuang J, Sun X M, Deng Z X, Li Y D. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Materials Chemistry and Physics , 2002, 76(2): 119–122 doi: 10.1016/S0254-0584(01)00509-0
|
11 |
Yoshida T, Tanaka T, Yoshida H, Funabiki T, Yoshida S, Murata T. Study of dehydration of magnesium hydroxide. Journal of Physical Chemistry , 1995, 99(27): 10890–10896 doi: 10.1021/j100027a033
|
12 |
L'vov B V, Novichikhin A V, Dyakov A O. Mechanism of thermal decomposition of magnesium hydroxide. Thermochimica Acta , 1998, 315(2): 135–143 doi: 10.1016/S0040-6031(97)00404-8
|
13 |
Yu J C, Xu A W, Zhang L Z, Song R Q, Wu L. W L. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. Journal of Physical Chemistry B , 2004, 108(1): 64–70 doi: 10.1021/jp035340w
|
14 |
Zou G L, Liu R, Chen W X, Xu Z D. Preparation and characterization of lamellar-like Mg(OH)2 nanostructures via natural oxidation of Mg metal in formamide/water mixture. Materials Research Bulletin , 2007, 42(6): 1153–1158 doi: 10.1016/j.materresbull.2006.09.008
|
15 |
Ranjit K T, Klabunde K J. Solvent effects in the hydrolysis of magnesium methoxide, and the production of nanocrystalline magnesium hydroxide. An aid in understanding the formation of porous inorganic materials. Chemistry of Materials , 2005, 17(1): 65–73 doi: 10.1021/cm040360b
|
16 |
Sun X T, Xiang L, Zhu W C, Liu Q. Influence of solvents on the hydrothermal formation of one‐dimensional magnesium hydroxide. Crystal Research and Technology , 2008, 43(10): 1057–1061 doi: 10.1002/crat.200800069
|
17 |
Utamapanya S, Klabunde K J, Schlup J R. Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chemistry of Materials , 1991, 3(1): 175–181 doi: 10.1021/cm00013a036
|
18 |
Hsu J P, Nacu A. Preparation of submicron-sized Mg(OH)2 particles through precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2005, 262(1-3): 220–231 doi: 10.1016/j.colsurfa.2005.04.038
|
19 |
Dong H B, Du Z P, Zhao Y H, Zhou D P. Preparation of surface modified nano-Mg(OH)2 via precipitation method. Powder Technology , 2010, 198(3): 325–329 doi: 10.1016/j.powtec.2009.11.014
|
20 |
Lv J P, Qiu L Z, Qu B J. Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method. Journal of Crystal Growth , 2004, 267(3-4): 676–684 doi: 10.1016/j.jcrysgro.2004.04.034
|
21 |
Henrist C, Mathieu J P, Vogels C, Rulmont A, Cloots R. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. Journal of Crystal Growth , 2003, 249(1): 321–330 doi: 10.1016/S0022-0248(02)02068-7
|
22 |
Wu Q L, Xiang L, Jin Y. Influence of CaCl2 on the hydrothermal modification of Mg(OH)2. Powder Technology , 2006, 165(2): 100–104 doi: 10.1016/j.powtec.2006.03.023
|
23 |
Yan C L, Xue D F, Zou L J, Yan X X, Wang W. Preparation of magnesium hydroxide nanoflowers. Journal of Crystal Growth , 2005, 282(3-4): 448–454 doi: 10.1016/j.jcrysgro.2005.05.038
|
24 |
Alamdari A, Rahimpour M R, Esfandiari N, Nourafkan E. Kinetics of magnesium hydroxide precipitation from sea bittern. Chemical Engineering and Processing: Process Intensification , 2008, 47(2): 215–221 doi: 10.1016/j.cep.2007.02.012
|
25 |
S?hnel O, Mare?ek J. Precipitation of magnesium hydroxide. Kristall und Technik , 1978, 13(3): 253–262 doi: 10.1002/crat.19780130304
|
26 |
Turek M, Gnot W. Precipitation of magnesium hydroxide from brine. Industrial & Engineering Chemistry Research , 1995, 34(1): 244–250 doi: 10.1021/ie00040a025
|
27 |
Petric B, Petric N. Investigations of the Rate of Sedimentation of Magnesium Hydroxide Obtained from Sea Water. Industrial & Engineering Chemistry Process Design and Development , 1980, 19(3): 329–335 doi: 10.1021/i260075a001
|
28 |
Song X F, Sun S Y, Zhang D K, Wang J, Yu J G. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization. Frontiers of Chemical Science and Engineering , 2011, 5(4): 1–6 doi: 10.1007/s11705-011-1125-9
|
29 |
Dobrescu V, P?ra?cu E, Pincovschi E. Continuous magnesium hydroxide precipitation. Crystal Research and Technology , 1987, 22(3): 327–338 doi: 10.1002/crat.2170220307
|
30 |
Wang P P, Li C H, Gong H Y, Wang H Q, Liu J R. Morphology control and growth mechanism of magnesium hydroxide nanoparticles via a simple wet precipitation method. Ceramics International , 2011, 37(8): 3365–3370 doi: 10.1016/j.ceramint.2011.05.138
|
31 |
Chen D H, Zhu L Y, Zhang H P, Xu K, Chen M C. Magnesium hydroxide nanoparticles with controlled morphologies via wet coprecipitation. Materials Chemistry and Physics , 2008, 109(2-3): 224–229 doi: 10.1016/j.matchemphys.2007.11.014
|
32 |
Wojcik J A, Jones A G. Experimental Investigation into Dynamics and Stability of Continuous MSMPR Agglomerative Precipitation of CaCO3 Crystals. Chemical Engineering Research & Design , 1997, 75(2): 113–118 doi: 10.1205/026387697523516
|
33 |
McCabe W L. Crystal Growth in Aqueous Solutions1: II—Experimental. Industrial & Engineering Chemistry , 1929, 21(2): 112–119 doi: 10.1021/ie50230a004
|
34 |
McCabe W L. Crystal Growth in Aqueous Solutions1: I—Theory. Industrial & Engineering Chemistry , 1929, 21(1): 30–33 doi: 10.1021/ie50229a008
|
35 |
Abegg C F, Stevens J D, Larson M A. Crystal size distributions in continuous crystallizers when growth rate is size dependent. AIChE Journal. American Institute of Chemical Engineers , 1968, 14(1): 118–122 doi: 10.1002/aic.690140121
|
36 |
Canning T F, Randolph A D. Some aspects of crystallization theory: systems that violate McCabe's delta L Law. AIChE Journal. American Institute of Chemical Engineers , 1967, 13(1): 5–10 doi: 10.1002/aic.690130104
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|