Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2010, Vol. 4 Issue (4) : 445-451    https://doi.org/10.1007/s11705-010-0521-x
RESEARCH ARTICLE
Preparation of Cu/ZnO/Al2O3 catalyst under microwave irradiation for slurry methanol synthesis
Hui FAN, Huayan ZHENG, Zhong LI()
Key Laboratory of Coal Science and Technology (Ministry of Education and Shanxi Province), Taiyuan University of Technology, Taiyuan 030024, China
 Download: PDF(286 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cu/ZnO/Al2O3 catalysts with Cu/Zn/Al ratios of 6/3/1 were precipitated and aged by conventional and microwave heating methods and tested in the slurry phase reactor for methanol synthesis. The effect of technological condition of precipitation and aging process under microwave irradiation on the catalytic performance was investigated to optimize the preparing condition of Cu/ZnO/Al2O3 catalyst. The results showed that the microwave irradiation during precipitation process could improve the activity of the catalyst, but had little effect on the stability. While the microwave irradiation during aging process has a great benefit to both the activity and stability of the catalyst, the catalyst aged at 80°C for 1 h under microwave irradiation possessed higher methanol space time yield (STY) and more stable catalytic activity. The activity and stability of the catalyst was further enhanced when microwave irradiation was used in both precipitation and aging processes; the optimized condition for the catalyst precursor preparation was precipitation at 60°C and aging at 80°C under microwave irradiation.

Keywords microwave irradiation      precipitation temperature      aging temperature      methanol synthesis      Cu/ZnO/Al2O3 catalyst     
Corresponding Author(s): LI Zhong,Email:lizhong@tyut.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Hui FAN,Huayan ZHENG,Zhong LI. Preparation of Cu/ZnO/Al2O3 catalyst under microwave irradiation for slurry methanol synthesis[J]. Front Chem Eng Chin, 2010, 4(4): 445-451.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0521-x
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I4/445
catalystsrunning time/hSTY /(mg·g-1·h-1)water cont. /%SMeOH /(C-mol%)R/(%·d-1)
methanolethanolpropanol
MWP6072248.110.1299.220.380.401.82
MWP70300296.980.7799.360.470.170.17
MWP80144283.420.1199.350.460.190.29
NMWP70A80216280.670.1499.320.430.250.17
Tab.1  Methanol STY, selectivity for methanol () and deactivation rate () of the catalysts precipitated at different temperature under microwave irradiation
Fig.1  The XRD patterns of the catalysts
catalystsrunning time /hSTY /(mg·g-1·h-1)water cont. /%SMeOH /(C-mol%)R/(%·d-1)
methanolethanolpropanol
MWA6096268.000.7199.300.410.290.182
MWA70288281.831.599.290.310.400.18
MWA80372309.000.8199.350.490.160.11
MWA90300287.501.399.370.480.15- 0.30
MWP70A80216280.670.1499.320.430.250.17
Tab.2  Methanol STY, selectivity for methanol () and deactivation rate () of the catalysts aged at different temperature under microwave irradiation
Fig.2  XRD patterns of the catalysts
catalystsrunning time / hSTY /(mg·g-1·h-1)water cont. /%selectivity /(C-mol%)R/(%·d-1)
methanolethanolpropanol
MWA0.5108266.231.3099.220.360.420.85
MWA1.0372309.000.8199.350.490.160.11
MWA1.5312300.050.9699.370.450.170.10
MWA2.0240281.990.1399.360.410.230.16
MWA2.5156271.550.1599.160.560.280.26
NMWP70A80216280.670.1499.320.430.250.17
Tab.3  Methanol STY, selectivity for methanol () and deactivation rate () of the catalysts aged at 80°C for different time under microwave irradiation
Fig.3  XRD patterns of the catalysts
catalystsrunning time / hSTY /(mg·g-1·h-1)water cont. /%selectivity/(C-mol%)R/(%·d-1)
methanolethanolpropanol
MWP60A70200273.810.9899.310.280.410.26
MWP60A80500312.010.7999.420.350.230.05
MWP70A80400299.630.8899.330.460.210.07
NMWP70A80216280.670.1499.320.430.250.17
Tab.4  Methanol STY, selectivity for methanol () and deactivation rate () of the catalysts precipitated and aged at different temperature under microwave irradiation
Fig.4  XRD patterns of the catalysts
Fig.5  Effect of solvent on performance of the catalyst aged under microwave irradiation
Fig.6  XRD patterns of the catalysts aged under microwave irradiation used different solvent
1 Cybulski A. Liquid-phase methanol synthesis: catalysts, mechanism, kinetics, chemical equilibria, vapor-liquid equilibria, and modeling—A review. Catalysis Reviews. Science and Engineering , 1994, 36(4): 557–615
doi: 10.1080/01614949408013929
2 Wender I. Ractions of synthesis gas. Fuel Processing Technology , 1996, 48(3): 189–297
doi: 10.1016/S0378-3820(96)01048-X
3 Tijm P J A, Waller F J, Brown D M. Methanol technology developments for the new millennium. Applied Catalysis A, General , 2001, 221(1-2): 275–282
doi: 10.1016/S0926-860X(01)00805-5
4 Lee S, Sardesai A. Liquid phase methanol and dimethyl ether synthesis from syngas. Topics in Catalysis , 2005, 32(3-4): 197–207
doi: 10.1007/s11244-005-2891-8
5 Twigg M V, Spencer M S. Deactivation of supported copper metal catalysts for hydrogenation reaction. Applied Catalysis A, General , 2001, 212(1-2): 161–174
doi: 10.1016/S0926-860X(00)00854-1
6 Zhang X T, Chang J, Wang T J, Fu Y, Tan T W. Methanol synthesis catalyst prepared by two-step precipitation combined with addition of surfactant. Journal of Fuel Chemistry and Technology , 2005, 33(4): 479–482 (in Chinese)
7 Bems B, Schur M, Dassenoy A, Junkes H, Herein D, Schl?gl R. Ralations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. Chemistry , 2003, 9(9): 2039–2052
doi: 10.1002/chem.200204122
8 Millar G J, Holm I H, Uwins P J R, Drennan J. Characterization of precursors to methanol synthesis catalysts Cu/ZnO system. Journal of the Chemical Society, Faraday Transactions , 1998, 94(4): 593–600
doi: 10.1039/a703954i
9 Muhamad E N, Irmawati R, Taufiq-Yap Y H, Abdullah A H, Kniep B L, Girgsdies F, Ressler T. Comparative study of Cu/ZnO catalysts derived from different precursors as a function of aging. Catalysis Today , 2008, 131(1-4): 118–124
doi: 10.1016/j.cattod.2007.10.010
10 Porta P, Rossi S D, Ferraris G, Jacono M L, Minelli G, Moretti G. Structure characterization of malachite-like coprecipitated precursors of binary CuO-ZnO catalysts. Journal of Catalysis , 1988, 109(2): 367–377
doi: 10.1016/0021-9517(88)90219-9
11 Li J L, Inui T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperature. Applied Catalysis A, General , 1996, 137(1): 105–117
doi: 10.1016/0926-860X(95)00284-7
12 Baltes C, Vukojevic S, Schuth F. Correlation between synthesis, precursors and catalyst structure and activity of large set of CuO/ZnO/Al2O3 catalyst for methanol synthesis. Journal of Catalysis , 2008, 258(2): 334–344
doi: 10.1016/j.jcat.2008.07.004
13 Taylor S H, Graham J, Hutchings A. Mirzaei. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catalysis Today , 2003, 84(3-4): 113–119
doi: 10.1016/S0920-5861(03)00264-5
14 Ren J, Liu S S, Li Z, Lu X L, Xie K C. Oxidative carbonyation of methanol to dimethyl carbonate over CuCl/SiO2-TiO2 catalysts prepared by microwave heating: the effect of support composition. Applied Catalysis A, General , 2009, 366(1): 93–101
doi: 10.1016/j.apcata.2009.06.042
15 Lingaiah N, Sai Prasad P S, Kanta Rao P, Berry F J, Smart L E. Studies on magnesia supported mono- and bimetallic Pd-Fe catalysts prepared by microwave irradiation method. Applied Catalysis A, General , 2001, 213(2): 189–196
doi: 10.1016/S0926-860X(00)00888-7
16 Zhu R Z, Meng X L, Zong Z M, Wei X Y. Application of microwave technique in catalyst preparation. Modern Chemical Industry , 2007, 27(Suppl 1): 382–386 (in Chinese)
17 Komarneni S, Roy R, Li Q H. Microwave-hydrothermal synthesis of Ce ramicpowders. Materials Research Bulletin , 1992, 27(12): 1393–1405
doi: 10.1016/0025-5408(92)90004-J
18 Zhang X R, Wang L C, Cao Y, Dai W L, He H Y, Fan K N. A unique microwave effect on the microstructural modification of Cu/ZnO/Al2O3 catalysts for steam reforming of methanol. Chemical Communications , 2005, 32: 4104–4106
doi: 10.1039/b502997j
19 Cen Y Q, Li X N, Liu H Z. Preparation of copper-based catalysts for methanol synthesis by acid-alkali-based alternate precipitation method. Chinese Journal of Catalysis , 2006, 27(3): 210–216
doi: 10.1016/S1872-2067(06)60014-4
20 Figueiredo R T, Martinez-Arias A, Lopez Granados M, Fierro J L G. Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation. Journal of Catalysis , 1998, 178(1): 146–152
doi: 10.1006/jcat.1998.2106
21 Wang H, Zhang J R, Zhu J J. A microwave assisted heating method for the rapid synthesis of sphalrite-type mercury sulfide nanocrystal with different sizes. Journal of Crystal Growth , 2001, 233(4): 829–836
doi: 10.1016/S0022-0248(01)01629-3
22 Palchik O, Kerner R, Zhu Z, Gedanken A. Preparation of Cu2-xTe by using microwave heating. Journal of Solid State Chemistry , 2000, 154(2): 530–534
doi: 10.1006/jssc.2000.8875
[1] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[2] Hui Shang, Pengfei Ye, Yude Yue, Tianye Wang, Wenhui Zhang, Sainab Omar, Jiawei Wang. Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor[J]. Front. Chem. Sci. Eng., 2019, 13(4): 744-758.
[3] Xinmei LIU, Shaofen BAI, Huidong ZHUANG, Zifeng YAN. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2[J]. Front Chem Sci Eng, 2012, 6(1): 47-52.
[4] Ruizhi CHU, Xianyong WEI, Zhimin ZONG, Wenjia ZHAO. A study on the catalytic performance of Pd/γ-Al2O3, prepared by microwave calcination, in the direct synthesis of dimethylether[J]. Front Chem Eng Chin, 2010, 4(4): 452-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed