|
|
An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming |
Yang Su1, Liping Lü2, Weifeng Shen1( ), Shun’an Wei1 |
1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China 2. School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China |
|
|
Abstract Steam methane reforming (SMR)-based methanol synthesis plants utilizing a single CO2 feed represent one of the predominant technologies for improving methanol yield and CO2 utilization. However, SMR alone cannot achieve full CO2 utilization, and a high water content accumulates if CO2 is only fed into the methanol reactor. In this study, a process integrating SMR with dry methane reforming to improve the conversion of both methane and CO2 is proposed. We also propose an innovative methanol production approach in which captured CO2 is introduced into both the SMR process and the recycle gas of the methanol synthesis loop. This dual CO2 feed approach aims to optimize the stoichiometric ratio of the reactants. Comparative evaluations are carried out from a techno-economic point of view, and the proposed process is demonstrated to be more efficient in terms of both methanol productivity and CO2 utilization than the existing stand-alone natural gas-based methanol process.
|
Keywords
methanol synthesis
CO2 utilization
dry methane reforming
steam methane reforming
process design
|
Corresponding Author(s):
Weifeng Shen
|
Online First Date: 05 December 2019
Issue Date: 22 May 2020
|
|
1 |
A Riaz, G Zahedi, J J Klemeš. A review of cleaner production methods for the manufacture of methanol. Journal of Cleaner Production, 2013, 57(20): 19–37
https://doi.org/10.1016/j.jclepro.2013.06.017
|
2 |
S Verhelst, J W Turner, L Sileghem, J Vancoillie. Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 2019, 70: 43–88
https://doi.org/10.1016/j.pecs.2018.10.001
|
3 |
M Schaefer, F Behrendt, T Hammer. Evaluation of strategies for the subsequent use of CO2. Frontiers of Chemical Engineering in China, 2010, 4(2): 172–183
https://doi.org/10.1007/s11705-009-0236-z
|
4 |
I J Castellanos-Beltran, G P Assima, J M Lavoie. Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst. Frontiers of Chemical Science and Engineering, 2018, 12(2): 226–238
https://doi.org/10.1007/s11705-018-1709-8
|
5 |
B Song, Y Li, G Cao, Z Sun, X Han. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 564–574
https://doi.org/10.1007/s11705-017-1654-y
|
6 |
P Biedermann, T Grube, B Höhlein. Methanol as an energy carrier. Jülich: Forschungszentrum Jülich GmbH, 2006, 14–15
|
7 |
T Ferdan, M Pavlas, V Nevrlý, R Šomplák, P Stehlík. Greenhouse gas emissions from thermal treatment of non-recyclable municipal waste. Frontiers of Chemical Science and Engineering, 2018, 12(4): 815–831
https://doi.org/10.1007/s11705-018-1761-4
|
8 |
P S Varbanov, T G Walmsley, Y V Fan, J J Klemeš, S J Perry. Spatial targeting evaluation of energy and environmental performance of waste-to-energy processing. Frontiers of Chemical Science and Engineering, 2018, 12(4): 731–744
https://doi.org/10.1007/s11705-018-1772-1
|
9 |
G De Guido, M Compagnoni, L A Pellegrini, I Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion. Frontiers of Chemical Science and Engineering, 2018, 12(2): 315–325
https://doi.org/10.1007/s11705-017-1698-z
|
10 |
D Milani, R Khalilpour, G Zahedi, A Abbas. A model-based analysis of CO2 utilization in methanol synthesis plant. Journal of CO2 Utilization, 2015, 10(24): 12–22
|
11 |
B Cañete, N B Brignole, C E Gigola. Methanol production from high CO2 content natural gas. In: Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2018, 151–156
|
12 |
X Liu, S Bai, H Zhuang, Z Yan. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2. Frontiers of Chemical Science and Engineering, 2012, 6(1): 47–52
https://doi.org/10.1007/s11705-011-1170-4
|
13 |
C Pichas, P Pomonis, D Petrakis, A Ladavos. Kinetic study of the catalytic dry reforming of CH4 with CO2 over La2-xSrxNiO4 perovskite-type oxides. Applied Catalysis A, General, 2010, 386(1-2): 116–123
https://doi.org/10.1016/j.apcata.2010.07.043
|
14 |
X Li, J Ai, W Li, D Li. Ni-Co bimetallic catalyst for CH4 reforming with CO2. Frontiers of Chemical Engineering in China, 2010, 4(4): 476–480
https://doi.org/10.1007/s11705-010-0512-y
|
15 |
B Stolze, J Titus, S A Schunk, A Milanov, E Schwab, R Gläser. Stability of Ni/SiO2-ZrO2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide. Frontiers of Chemical Science and Engineering, 2016, 10(2): 281–293
https://doi.org/10.1007/s11705-016-1568-0
|
16 |
W Zhang, Y Zhang. The catalytic effect of both oxygen-bearing functional group and ash in carbonaceous catalyst on CH4-CO2 reforming. Frontiers of Chemical Engineering in China, 2010, 4(2): 147–152
https://doi.org/10.1007/s11705-009-0242-1
|
17 |
X E Verykios. Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. International Journal of Hydrogen Energy, 2003, 28(10): 1045–1063
https://doi.org/10.1016/S0360-3199(02)00215-X
|
18 |
K Aasberg-Petersen, I Dybkjær, C Ovesen, N Schjødt, J Sehested, S Thomsen. Natural gas to synthesis gas-catalysts and catalytic processes. Journal of Natural Gas Science and Engineering, 2011, 3(2): 423–459
https://doi.org/10.1016/j.jngse.2011.03.004
|
19 |
N A K Aramouni, J G Touma, B A Tarboush, J Zeaiter, M N Ahmad. Catalyst design for dry reforming of methane: Analysis review. Renewable & Sustainable Energy Reviews, 2018, 82: 2570–2585
https://doi.org/10.1016/j.rser.2017.09.076
|
20 |
S K Ryi, S W Lee, J W Park, D K Oh, J S Park, S S Kim. Combined steam and CO2 reforming of methane using catalytic nickel membrane for gas to liquid (GTL) process. Catalysis Today, 2014, 236: 49–56
https://doi.org/10.1016/j.cattod.2013.11.001
|
21 |
V R Choudhary, K C Mondal. CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst. Applied Energy, 2006, 83(9): 1024–1032
https://doi.org/10.1016/j.apenergy.2005.09.008
|
22 |
K Tomishige, Y Himeno, Y Matsuo, Y Yoshinaga, K Fujimoto. Catalytic performance and carbon deposition behavior of a NiO-MgO solid solution in methane reforming with carbon dioxide under pressurized conditions. Industrial & Engineering Chemistry Research, 2000, 39(6): 1891–1897
https://doi.org/10.1021/ie990884z
|
23 |
G A Olah, A Goeppert, M Czaun, G S Prakash. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO–2H2) for methanol and hydrocarbon synthesis. Journal of the American Chemical Society, 2013, 135(2): 648–650
https://doi.org/10.1021/ja311796n
|
24 |
M Soria, C Mateos-Pedrero, A Guerrero-Ruiz, I Rodríguez-Ramos. Thermodynamic and experimental study of combined dry and steam reforming of methane on Ru/ZrO2-La2O3 catalyst at low temperature. International Journal of Hydrogen Energy, 2011, 36(23): 15212–15220
https://doi.org/10.1016/j.ijhydene.2011.08.117
|
25 |
P Gangadharan, K C Kanchi, H H Lou. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chemical Engineering Research & Design, 2012, 90(11): 1956–1968
https://doi.org/10.1016/j.cherd.2012.04.008
|
26 |
J Baltrusaitis, W L Luyben. Methane conversion to syngas for gas-to-liquids (GTL): Is sustainable CO2 reuse via dry methane reforming (DMR) cost competitive with SMR and ATR processes? ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2100–2111
https://doi.org/10.1021/acssuschemeng.5b00368
|
27 |
W Wu, W Felicia, H T Yang. Optimization of syngas production systems subject to almost net-zero CO2 emission. In: International Symposium on Advanced Control of Industrial Processes. Hiroshima: ADCONIP, 2014, 174–178
|
28 |
B Cañete, C E Gigola, N B Brignole. Synthesis gas processes for methanol production via CH4 reforming with CO2, H2O, and O2. Industrial & Engineering Chemistry Research, 2014, 53(17): 7103–7112
https://doi.org/10.1021/ie404425e
|
29 |
M Abashar. Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors. International Journal of Hydrogen Energy, 2004, 29(8): 799–808
https://doi.org/10.1016/j.ijhydene.2003.09.010
|
30 |
A K Avetisov, J R Rostrup-Nielsen, V L Kuchaev, J H Bak Hansen, A G Zyskin, E N Shapatina. Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst. Journal of Molecular Catalysis A Chemical, 2010, 315(2): 155–162
https://doi.org/10.1016/j.molcata.2009.06.013
|
31 |
M T Luu, D Milani, A Bahadori, A. AbbasA comparative study of CO2 utilization in methanol synthesis with various syngas production technologies. Journal of CO2 Utilization, 2015, 12: 62–76
|
32 |
J Xu, G F Froment. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE Journal. American Institute of Chemical Engineers, 1989, 35(1): 88–96
https://doi.org/10.1002/aic.690350109
|
33 |
W Wu, H T Yang, J J Hwang. Dynamic control of a stand-alone syngas production system with near-zero CO2 emissions. Energy Conversion and Management, 2015, 89: 24–33
https://doi.org/10.1016/j.enconman.2014.09.047
|
34 |
V Choudhary, B Uphade, A Mamman. Simultaneous steam and CO2 reforming of methane to syngas over NiO/MgO/SA-5205 in presence and absence of oxygen. Applied Catalysis A, General, 1998, 168(1): 33–46
https://doi.org/10.1016/S0926-860X(97)00331-1
|
35 |
W Huang, L Yu, W Li, Z Ma. Synthesis of methanol and ethanol over CuZnAl slurry catalyst prepared by complete liquid-phase technology. Frontiers of Chemical Engineering in China, 2010, 4(4): 472–475
https://doi.org/10.1007/s11705-010-0525-6
|
36 |
H Fan, H Zheng, Z Li. Preparation of Cu/ZnO/Al2O3 catalyst under microwave irradiation for slurry methanol synthesis. Frontiers of Chemical Engineering in China, 2010, 4(4): 445–451
https://doi.org/10.1007/s11705-010-0521-x
|
37 |
I Løvik. Modelling, estimation and optimization of the methanol synthesis with catalyst deactivation. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 2001, 127–128
|
38 |
G Graaf, P Sijtsema, E Stamhuis, G Joosten. On chemical equilibria in methanol synthesis. Chemical Engineering Science, 1990, 45(3): 769–770
https://doi.org/10.1016/0009-2509(90)87020-S
|
39 |
K V Bussche, G Froment. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. Journal of Catalysis, 1996, 161(1): 1–10
https://doi.org/10.1006/jcat.1996.0156
|
40 |
M Sahibzada, I Metcalfe, D Chadwick. Methanol synthesis from CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finite conversions. Journal of Catalysis, 1998, 174(2): 111–118
https://doi.org/10.1006/jcat.1998.1964
|
41 |
D Mignard, C Pritchard. On the use of electrolytic hydrogen from variable renewable energies for the enhanced conversion of biomass to fuels. Chemical Engineering Research & Design, 2008, 86(5): 473–487
https://doi.org/10.1016/j.cherd.2007.12.008
|
42 |
I Dincer, M A Rosen. Exergy: Energy, Environment and Sustainable Development. 2nd ed. Amsterdam: Elsevier, 2013, 32–33
|
43 |
D Bellotti, M Rivarolo, L Magistri. Economic feasibility of methanol synthesis as a method for CO2 reduction and energy storage. Energy Procedia, 2019, 158: 4721–4728
https://doi.org/10.1016/j.egypro.2019.01.730
|
44 |
A Yang, W Shen, S A Wei, L C Dong, J Li, V Gerbaud. Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes. AIChE Journal. American Institute of Chemical Engineers, 2019, 65(4): 1281–1293
https://doi.org/10.1002/aic.16526
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|