Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (1) : 208-219    https://doi.org/10.1007/s11705-020-1945-6
RESEARCH ARTICLE
Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2
Faraz Montazersadgh1, Hao Zhang1, Anas Alkayal2, Benjamin Buckley2, Ben W. Kolosz3, Bing Xu4, Jin Xuan1()
1. Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
2. Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
3. Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609-2280, USA
4. Department of Accountancy, Economics and Finance, Heriot-Watt University, Edinburgh, EH14 4AS, UK
 Download: PDF(1101 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Utilizing CO2 in an electro-chemical process and synthesizing value-added chemicals are amongst the few viable and scalable pathways in carbon capture and utilization technologies. CO2 electro-reduction is also counted as one of the main options entailing less fossil fuel consumption and as a future electrical energy storage strategy. The current study aims at developing a new electrochemical platform to produce low-carbon e-biofuel through multifunctional electrosynthesis and integrated co-valorisation of biomass feedstocks with captured CO2. In this approach, CO2 is reduced at the cathode to produce drop-in fuels (e.g., methanol) while value-added chemicals (e.g., selective oxidation of alcohols, aldehydes, carboxylic acids and amines/amides) are produced at the anode. In this work, a numerical model of a continuous-flow design considering various anodic and cathodic reactions was built to determine the most techno-economically feasible configurations from the aspects of energy efficiency, environment impact and economical values. The reactor design was then optimized via parametric analysis.

Keywords electrosynthesis      e-biofuels      CO2 utilization      computational model     
Corresponding Author(s): Jin Xuan   
Online First Date: 13 July 2020    Issue Date: 12 January 2021
 Cite this article:   
Faraz Montazersadgh,Hao Zhang,Anas Alkayal, et al. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1945-6
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I1/208
Reaction No. Reaction Conditions Ref.
1 4OH?→ O2 + 2H2O+ 4e? Pt, 1 mol/L, 6°C±1°C [16]
2 HCOO?→ CO2 + H+ + 2e? Pd, 1 mol/L, 6°C±1°C [16]
3 2 CH3COO?→ CH3CH3 + 2CO2 + 2e? 1 mol/L, pH>4, 348 K [17,18]
4 2propionate?→ C4H10 + 2CO2 + 2e? Pt, 1 mol/L, pH= 7 [17,19]
5 methanol+ 2H2O → HCO3? + 7H+ + 6e? pH= 7 [19]
6 ethanol+ 5H2O → 2HCO3? + 14H+ + 12e? pH= 7 [19]
7 C3H8O3 + 8OH-→ 3HCOOH+ 5H2O+ 8e- 298 K, 1 bar [20]
8 C3H8O3 + 2OH-→ C3H6O3 + 2H2O+ 2e- 298 K, 1 bar [20]
9 Ph–CH?OH–CH3→ Ph–C=O–CH3 + 2e- + 2H+ 0.2 mmol/L TEMPO, 0.5 mol/L NAHCO3 [21]
10 + 6OH-+ 4H2O+ 6e- Pt, 0.3 mol/L NaClO4, pH= 10 to 13, 20°C [22,23]
11 + 4OH-+ 2H2O+ 4e- pH<7.0, NiFe LDH [24]
12 + CO2 + 4H+ + 4e- AgO, NaOH [25]
13 C6H12O6 + 2OH-→ C6H12O7 + H2O+ 2e- 298 K, 1 bar [20]
14 CH4 + 2OH-→ CH3OH+ H2O+ 2e- 298 K, 1 bar [20]
15 +2e? + 2H+ KI, H2O, t-BuOH [26]
Tab.1  Anodic reactions with water as solvent
Reaction No. Reaction Conditions Ref.
16 + MeOH → + 2e- + 2H+ 10°C?15°C [29]
17 + MeOH → + 2H+ + 2e? ET3N-3HF, Pt [26]
18 + MeOH → +H+ + e? KOH [30]
19 +H2O → + H+ + e? MeCN [31]
20 + CN?+ e? 298 K, 1 bar [32]
Tab.2  Anodic reactions with DMF as solventa)
Reaction No. Reaction Conditions Ref.
21 CO2 + H2O+ 2e?→ HCOO? + OH? 298 K, 1 bar [33]
22 2?CO2 + 2?H+?+ 2?e- 298 K, 1 bar [33]
23 CO2 + 2?H+?+ 2?e-→ HCOOH 298 K, 1 bar [33]
24 CO2 + 2?H+?+ 2?e-→ CO+ H2O 298 K, 1 bar [33]
25 CH3OH+ 2?H+?+ 2?e-→ CH4(g) +?H2O 298 K, 1 bar [33]
26 O2 + 4?H+?+ 4?e-→ 2H2O 298 K, 1 bar [33]
27 SO2 + 4?H+?+ 4?e-→ S(s) + 2H2O 298 K, 1 bar [33]
28 MnO4-?+ 8?H+?+ 5?e-→ Mn2+?+ 4H2O 298 K, 1 bar [33]
29 Fe2O3(s) + 3H2O?+ 2?e-→ 2Fe(OH)2(s) + 2OH- 1 mol/L, 1 bar, 80°C [34]
30a) + 2?H+?+ 2?e? 298 K, 1 bar [33]
Tab.3  Cathodic reactions with organic and inorganic solvent
Fig.1  Model schematic for e-biofuel reactor.
Fig.2  (a) Velocity field of the gas and liquid (m/s); (b) dimensionless velocity profile across channel height at 6 mm from the entrance, model results vs. experimental measurements [42].
Quantity/unit Value
Electrolyte conductivity /(S?m?1) 0.4
Channel height /mm 1.5
Channel length /mm 15
Flow velocity /(m?s?1) 0.005
Electrolyte Density /(kg?m?3) 1008
CO2 initial concentration /(mol?L?1) 0.001
Cathode equilibrium potential /V ?1.02
Cathode HER equilibrium potential /V ?0.83
Anode equilibrium potential /V 0
Cathode exchange current density /(A?m?2) 0.1
Cathode HER exchange current density /(A?m?2) 0.016
Anode exchange current density /(A?m?2) 0.02
OH? initial concentration /(mol?L?1) 1e?4
Electrolyte flow rate /(L?min?1) 0.5e?3
V polarization /V 1.5
Anode charge transfer coefficient 0.16
Cathode charge transfer coefficient ?0.05
Cathode HER charge transfer coefficient ?0.5
Channel depth /cm 0.5
Porous height /mm 0.3
Gas channel height /mm 1
Electrode permeability /m2 1e?12
Electrode porosity 0.7
Gas density /(kg?m?3) 1.562
Gas viscosity /(kg?m?1?s?1) 1.48e?5
Tab.4  Model input parameters
Fig.3  Model results vs. experimental data for pH= 10.0 [43].
Reaction number Limiting factor
1, 21, 25, 27 electrode diffusivity
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 anodic reaction
16, 17, 18, 19, 20, 22, 23, 24 cathodic reaction, CO2
26, 28, 29, 30 cathodic reaction
Tab.5  Cell kinetics limiting factor according to the chosen cell kinetics scheme
Fig.4  (a) Energy efficiency and (b) current efficiency for various half-cell reactions.
Fig.5  (a) CO2 removal rate and (b) E-factor for various half-cell reactions.
Fig.6  Product added value.
Fig.7  Cell design optimization parameters. (a) Channel length vs. energy conversion rate, (b) electrolyte flowrate vs. CO2 conversion rate, (c) CO2 inlet flowrate vs. CO2 conversion rate and (d) channel height vs. energy conversion rate.
1 H Zsiborács, N H Baranyai, A Vincze, L Zentkó, Z Birkner, K Máté, G Pintér. Intermittent renewable energy sources: The role of energy storage in the european power system of 2040. Electronics (Basel), 2019, 8(7): 729
https://doi.org/10.3390/electronics8070729
2 P Dadhich, J Dooley, Y Fujii, O Hohmeyer, K Riahi. Cost and economic potential. IPCC Special Report on Carbon Dioxide Capture Storage, 2005: 341–362
3 M Pérez-Fortes, J C Schöneberger, A Boulamanti, G Harrison, E Tzimas. Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential. International Journal of Hydrogen Energy, 2016, 41(37): 16444–16462
https://doi.org/10.1016/j.ijhydene.2016.05.199
4 S Verma, S Lu, P J A Kenis. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nature Energy, 2019, 4(6): 466–474
https://doi.org/10.1038/s41560-019-0374-6
5 S Das, T Balaraju, S Barman, S S Sreejith, R Pochamoni, S Roy. A molecular CO2 reduction catalyst based on giant polyoxometalate Mo368. Frontiers in Chemistry, 2018, 6: 514
https://doi.org/10.3389/fchem.2018.00514
6 Z Liu, H Yang, R Kutz, R I Masel. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. Journal of the Electrochemical Society, 2018, 165(15): J3371–J3377
https://doi.org/10.1149/2.0501815jes
7 J J Kaczur, H Yang, Z Liu, S D Sajjad, R I Masel. Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Frontiers in Chemistry, 2018, 6: 1–16
https://doi.org/10.3389/fchem.2018.00263
8 J Lu, C Zhu, C Pan, W Lin, J P Lemmon, F Chen, C Li and K Xie. Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser. Science Advances, 2018, 4(3): eaar5100
9 Y C Li, G Lee, T Yuan, Y Wang, D H Nam, Z Wang, F P García de Arquer, Y Lum, C T Dinh, O Voznyy, E H Sargent. CO2 electroreduction from carbonate electrolyte. ACS Energy Letters, 2019, 4(6): 1427–1431
https://doi.org/10.1021/acsenergylett.9b00975
10 L Wang, M Chen, R Küngas, T E Lin, S Diethelm, F Maréchal, J Van herle. Power-to-fuels via solid-oxide electrolyzer: Operating window and techno-economics. Renewable & Sustainable Energy Reviews, 2019, 110: 174–187
https://doi.org/10.1016/j.rser.2019.04.071
11 L Wang, M Pérez-Fortes, H Madi, S Diethelm, J V herle, F Maréchal. Optimal design of solid-oxide electrolyzer based power-to-methane systems: A comprehensive comparison between steam electrolysis and co-electrolysis. Applied Energy, 2018, 211: 1060–1079
https://doi.org/10.1016/j.apenergy.2017.11.050
12 A Tatin, C Comminges, B Kokoh, C Costentin, M Robert, J M Savéant. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials. Proceeding of the National Academy of Science of the United States of America, 2016, 113 (20): 5526–5529
13 G O Larrazábal, A J Martín, J Pérez-Ramírez. Building blocks for high performance in electrocatalytic CO2 reduction: Materials, optimization strategies, and device engineering. Journal of Physical Chemistry Letters, 2017, 8(16): 3933–3944
https://doi.org/10.1021/acs.jpclett.7b01380
14 M Lukaszewski, M Soszko, A Czerwiński. Electrochemical methods of real surface area determination of noble metal electrodes—an overview. International Journal of Electrochemical Science, 2016, 11(6): 4442–4469
https://doi.org/10.20964/2016.06.71
15 X Li, I Angelidaki, Y Zhang. Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction. Water Research, 2018, 142: 396–404
https://doi.org/10.1016/j.watres.2018.06.013
16 B E Conway, M Dzieciuch. New approaches to the Study of electrochemical decarboxylation and the Kolbe reaction: Part I. The model reaction with formate. Canadian Journal of Chemistry, 2011, 41(1): 21–37
https://doi.org/10.1139/v63-005
17 J O Bockris. Modern Aspects of Electrochemistry. No. 4, 1st ed. Berlin: Springer, 1966, 1–46
18 M T Hicks, P S Fedkiw. A model for Kolbe electrolysis in a parallel plate reactor. Journal of Applied Electrochemistry, 1998, 28(11): 1157–1166
https://doi.org/10.1023/A:1003495828226
19 Y Li, S K Khanal. Bioenergy: Principles and Applications. 1st ed. Hoboken: Wiley-Blackwell, 2016, 1–600
20 S Verma, S Lu, P J A Kenis. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nature Energy, 2019, 4(6): 466–474
https://doi.org/10.1038/s41560-019-0374-6
21 T Li, Y Cao, J He, C P Berlinguette. Electrolytic CO2 reduction in tandem with oxidative organic chemistry. ACS Central Science, 2017, 3(7): 778–783
https://doi.org/10.1021/acscentsci.7b00207
22 R Latsuzbaia, R Bisselink, A Anastasopol, H van der Meer, R van Heck, M Segurola Yagüe, M Zijlstra, M Roelands, M Crockatt, E Goetheer, et al.. Continuous electrochemical oxidation of biomass derived 5- (hydroxymethyl) furfural into 2,5-furandicarboxylic acid. Journal of Applied Electrochemistry, 2018, 48(6): 611–626
https://doi.org/10.1007/s10800-018-1157-7
23 S R Kubota, K Choi. Electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation. ChemSusChem, 2018, 11(13): 2138–2145
https://doi.org/10.1002/cssc.201800532
24 W Liu, L Dang, Z Xu, H Yu, S Jin, G W Huber. Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catalysis, 2018, 8(6): 5533–5541
https://doi.org/10.1021/acscatal.8b01017
25 N A Hampson, J B Lee, K I MacDonald. The oxidation of amino compounds at anodic silver. Electrochimica Acta, 1972, 17(5): 921–955
https://doi.org/10.1016/0013-4686(72)90014-X
26 T Fuchigami, M Atobe, S Inagi. Examples of Organic Electrosynthesis. Fundamentals and Applications of Organic Electrochemistry. 1st ed. Hoboken: John Wiley & Sons Ltd., 2014, 209–216
27 B S Krumgalz, J G M Barthel. Conductivity study of electrolyte solutions in dimethylformamide at various temperatures. Zeitschrift für Physikalische Chemie (Leipzig), 1984, 142(2): 167–178
https://doi.org/10.1524/zpch.1984.142.2.167
28 C L Yaws. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals. 2nd ed. Oxford: Gulf Professional Publishing, 2015, 10–812
29 T Shono, Y Matsumura, K Tsubata. Anodic oxidation of N-carbomethoxypyrrolidine: 2-methoxy-N-carbomethoxypyrrolidine. Organic Syntheses. 1st ed. Hoboken: John Wiley & Sons Inc., 2003
30 H P Fritz. Electrochemical anodic of naphtaline and l and 2-methoxynaphtaline. Electrochimica Acta, 1976, 2: 1099–1100
31 T Shono, A Ikeda. Electroorganic Chemistry. Journal of the American Chemical Society, 1972, 94(22): 7892–7898
https://doi.org/10.1021/ja00777a036
32 I Gallardo, G Guirado, J Marquet. Nucleophilic. Aromatic substitution of hydrogen: A novel electrochemical approach to the cyanation of nitroarenes. ChemInform, 2010, 33(13): 1759–1765
https://doi.org/10.1002/chin.200213103
33 J Rumble. CRC Handbook of Chemistry and Physics. 95th ed. Boca Raton: CRC Press, 2014, 1118–1512
34 S C Pang, S F Chin, M A Anderson. Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential. Journal of Colloid and Interface Science, 2007, 311(1): 94–101
https://doi.org/10.1016/j.jcis.2007.02.058
35 COMSOL Multiphysics®, v 5.4. Stockholm: COMSOL AB, 2019
36 H Wang, D Y C Leung, J Xuan. Modeling of a microfluidic electrochemical cell for CO2 utilization and fuel production. Applied Energy, 2013, 102: 1057–1062
https://doi.org/10.1016/j.apenergy.2012.06.020
37 T Rosenqvist, J Haugom. Gibbs energy of formation of SO2. Journal of the Chemical Society, Faraday Transaction 1. Physical Chemistry in Condensed Phases, 1976, 21(12): 1649–1654
38 D Baker. General Chemistry. 5th ed. (Ebbing, Darrell D.). Journal of Chemical Education, 1997, 74(9):1049
39 R P V Faria, C S M Pereira, V M T M Silva, J M Loureiro, A E Rodrigues. Glycerol valorization as biofuel: Thermodynamic and kinetic study of the acetalization of glycerol with acetaldehyde. Industrial & Engineering Chemistry Research, 2013, 52(4): 1538–1547
https://doi.org/10.1021/ie302935w
40 G N Stephanopoulos, A A Aristidou, J Nielsen. Thermodynamics of Cellular Processes. 1st ed. Amsterdam: Elsevier, 1998, 629–694
41 Z Ahmad. Principles of Corrosion Engineering and Corrosion Control. 1st ed. Amsterdam: Elsevier, 2006, 217–218
42 R J Goldstein, D K Kreid. Measurement of laminar flow development in a square duct using a laser-doppler flowmeter. Journal of Applied Mechanics, Transactions ASME, 1964, 34(4): 813–818
43 D T Whipple, E C Finke, P J A Kenis. Microfluidic reactor for the electrochemical reduction of carbon dioxide: The effect of pH. Electrochemical and Solid-State Letters, 2010, 13(9): B109
https://doi.org/10.1149/1.3456590
44 R A Sheldon. The E-factor: Fifteen years on. Green Chemistry, 2007, 9(12): 1273–1283
https://doi.org/10.1039/b713736m
[1] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed