Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (3) : 272-281    https://doi.org/10.1007/s11705-009-0023-x
RESEARCH ARTICLE
Numerical investigation of the influence of kinetics and shape factor on barium sulfate precipitation in a continuous stirred tank
Zheng WANG1,2, Zai-Sha MAO1, Chao YANG1(), Qinghua ZHANG1, Jingcai CHENG1
1. National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; 2. State Key Laboratory of Chemical Safety and Control, SINOPEC Qingdao Research Institute of Safety Engineering, Qingdao 266071, China
 Download: PDF(481 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effect of kinetics and shape factor on barium sulfate precipitation in a continuous stirred tank has been investigated numerically through solving the standard momentum and mass transport equations in combination with the moment equations for crystal population balance. The numerical method was validated with the literature data. The simulated results include the distribution of the local supersaturation ratio in the reactor, the mean crystal size, and the coefficient of variation. The simulation results show that the value of shape factor used in the model affected greatly the mean crystal size and the moments of the crystal size distribution. The influence of the kinetic expressions on the simulation is also analyzed. It is important to investigate the relationship of the shape factor with the precipitator type and other operation conditions to obtain reliable simulation results and suitable kinetic equations of crystal nucleation and growth rates.

Keywords stirred tank      numerical simulation      precipitation      shape factor      crystal kinetics     
Corresponding Author(s): YANG Chao,Email:chaoyang@home.ipe.ac.cn   
Issue Date: 05 September 2009
 Cite this article:   
Zheng WANG,Zai-Sha MAO,Chao YANG, et al. Numerical investigation of the influence of kinetics and shape factor on barium sulfate precipitation in a continuous stirred tank[J]. Front Chem Eng Chin, 2009, 3(3): 272-281.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0023-x
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I3/272
1 Fitchett D E, Tarbell J M. Effect of mixing on the precipitation of barium sulphate in an MSMPR reactor. AIChE J , 1990, 36(4): 511-522
doi: 10.1002/aic.690360403
2 Chen J F, Zheng C, Chen G T. Interaction of macro- and micromixing on particle size distribution in reactive precipitation. Chem Eng Sci , 1996, 51(10): 1957-1966
doi: 10.1016/0009-2509(96)00053-X
3 Manth T, Mignon D, Offermann H. Experimental investigation of precipitation reactions under homogeneous mixing conditions. Chem Eng Sci , 1996, 51(11): 2571-2576
doi: 10.1016/0009-2509(96)00116-9
4 Kim W, Tarbell J M. Micromixing effects on barium sulphate precipitation in a double-jet semi batch reactor. Chem Eng Commun , 1999, 176: 89-113
doi: 10.1080/00986449908912148
5 Pagliolico S, Marchisio D, Barresi A A. Influence of operating conditions on BaSO4 crystal size and morphology in a continuous Couette precipitator. J Therm Anal Cal , 1999, 56(3): 1423-1433
doi: 10.1023/A:1010131228741
6 Garside J, Tavare N S. Mixing, reaction and precipitation: limits of micromixing in an MSMPR crystallizer. Chem Eng Sci , 1985, 40(8): 1485-1493
doi: 10.1016/0009-2509(85)80090-7
7 Pohorecky R, Baldyga J. The effect of micromixing on the course of precipitation in an unpremixed feed continuous tank crystallizer. In: Proc. of 5th Eur Conf on Mixing (BHRA). Wurzburg, Paper 12 , 1985,105-114
8 Baldyga J, Podgorska W, Pohorecky R. Mixing-precipitation model with application to double feed semibatch precipitation. Chem Eng Sci , 1995, 50(8): 1281-1300
doi: 10.1016/0009-2509(95)98841-2
9 Pohorecki R, Baldyga J. The use of a new model of micro-mixing for determination of crystal size in precipitation. Chem Eng Sci , 1985, 38(1): 79-83
doi: 10.1016/0009-2509(83)80136-5
10 Pohorecki R, Baldyga J. The effects of micromixing and the manner of reactor feeding on precipitation in stirred tank reactors. Chem Eng Sci , 1988, 43(8): 1949-1954
doi: 10.1016/0009-2509(88)87067-2
11 Zauner R, Jones AG. On the Influence of mixing on crystal precipitation processes-application of the segregated feed model. Chem Eng Sci , 2002, 57(5): 821-831
doi: 10.1016/S0009-2509(01)00417-1
12 Wei H, Garside J. Application of CFD modeling to precipitation systems. Trans IChemE , 1997, 75(A2): 219-227
doi: 10.1205/026387697523471
13 Vanleeuwen M L J, Bruinsma O S L. Influence of mixing on the product quality in precipitation. Chem Eng Sci , 1996, 51(11): 2595-2600
doi: 10.1016/0009-2509(96)00120-0
14 Garside J, Wei H. Pumped, stirred and maybe precipitated: simulation of precipitation process using CFD. Acta Polytech Scand, Chem Technol , 1997, 244: 9-15
15 Jaworski Z, Nienow A W. CFD modeling of continuous precipitation of barium sulphate in a stirred tank. Chem Eng J , 2003, 91: 167-174
doi: 10.1016/S1385-8947(02)00150-X
16 Wang Z, Zhang Q H, Mao Z-S, Yang C, Shen X Q. Simulation of Barium Sulfate precipitation using CFD and FM-PDF model in a continuous stirred tank. Chem Eng Technol , 2007, 30(12):1642-1649
doi: 10.1002/ceat.200700262
17 Wei H, Zhou W, Garside J. Computational fluid dynamics modeling of the precipitation process in a semibatch crystallizer. Ind Eng Chem Res , 2001, 40(23): 5255-5261
doi: 10.1021/ie001123v
18 Baldyga J, Orciuch W. Barium sulphate precipitation in a pipe-an experimental study and CFD modeling. Chem Eng Sci , 2001, 56(7): 2435-2444
doi: 10.1016/S0009-2509(00)00449-8
19 Piton D, Fox R O, Marcant B. Simulation of fine particle formation by precipitation using computational fluid dynamics. Can J Chem Eng , 2000, 78(5): 983-993
20 Marchisio D L, Barresi A A, Fox R O. Simulation of turbulent precipitation in a semibatch Taylor-Couette reactor using CFD. AIChE J , 2001, 47(3): 664-676
doi: 10.1002/aic.690470314
21 Marchisio D L, Barres A A. CFD simulation of mixing and reaction: the relevance of the micromixing model. Chem Eng Sci , 2003, 58(16): 3579-3587
doi: 10.1016/S0009-2509(03)00264-1
22 Vicum L, Mazzotti M. Multi-scale modeling of a mixing-precipitation process in a semibatch stirred tank. Chem Eng Sci , 2007, 62 (13): 3513-3527
doi: 10.1016/j.ces.2007.02.056
23 Baldyga J, Makowski L, Orciuch W. Double-feed semibatch precipitation effects of mixing. Trans IChemE , 2007, 85(A5): 745-752
doi: 10.1205/cherd06177
24 Wang W J, Mao Z S. Numerical simulation of gas-liquid flow in a stirred tank with a Rushton turbine. Chinese J Chem Eng , 2002, 10(4): 385-395
25 Wang W J, Mao ZS, Yang C. Experimental and numerical investigation on gas holdup and flooding in an aerated stirred tank with Rushton impeller. Ind Eng Chem Res , 2006, 45(3): 1141-1151
doi: 10.1021/ie0503085
26 Wang Z, Mao Z S, Yang C, Shen X Q. CFD Approach to the effect of mixing and draft tube on the precipitation of barium sulfate in a continuous stirred tank. Chinese J Chem Eng , 2006, 14(6): 713-722
doi: 10.1016/S1004-9541(07)60001-9
27 Randolph A D, Larson M A. Theory of Particulate Processes, 2nd Edition. New York: Academic Press, 1988
28 Bromley L A. Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J , 1973, 19(2): 313-320
doi: 10.1002/aic.690190216
29 Nielsen A E. Electrolyte crystal growth mechanisms. J Crystal Growth , 1984, 67(2): 289-310
doi: 10.1016/0022-0248(84)90189-1
30 Aoun M, Plasari E, David R, Villermaux J. Are barium sulphate kinetics sufficiently known for testing precipitation reactor models? Chem Eng Sci , 1996, 51(10): 2449-2458
doi: 10.1016/0009-2509(96)00101-7
31 Baldyga J, Orciuch W. Closure problem for precipitation. Trans IChemE , 1997,75(A2): 160-170
doi: 10.1205/026387697523624
32 Kim W S, Tarebell J M. Micromixing effects on barium sulfate precipitation in an MSMPR reactor. Chem Eng Commun , 1996, 146(1): 33-56
doi: 10.1080/00986449608936480
33 Phillips R, Rohani S, Baldyga J. Micromixing in a single-feed semi-batch precipitation process. AIChE J , 1999, 45(1): 82-92
doi: 10.1002/aic.690450108
34 Taguchi K, Garside J, Tavare NS. Mixing, reaction and precipitation: semibatch barium sulphate precipitation. In: Benkreira H. ed. Fluid Mixing 6. Rugby: Institution of Chemical Engineers , 1999, 395-419
35 Marchisio D L, Barresi A A, Garbero M. Nucleation, growth, and agglomeration in barium sulfate turbulent precipitation. AIChE J , 2002, 48(9): 2039-2050
doi: 10.1002/aic.690480917
36 Marchisio D L, Fox R O, Barresi A A. On the comparison between presumed and full PDF methods for turbulent precipitation. Ind Eng Chem Res , 2001, 40(23): 5132-5139
doi: 10.1021/ie0010262
37 Marchisio D L, Fox R O, Barresi A A. On the simulation of turbulent precipitation in a tubular reactor via computational fluid dynamics (CFD). Trans IChemE , 2001, 79(A6): 998-1004
38 Marchisio D L, Barresi A A, Fox R O. Comparison of different modeling approaches to turbulent precipitation. In: Proc of 10th Eur Conf on Mixing. Delft, the Netherlands , 2000, 77-84
39 Jones A G. Crystallization Process Systems. Oxford: Butterworth-Heinemann, 2002
[1] Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process[J]. Front. Chem. Sci. Eng., 2020, 14(5): 902-912.
[2] Chunlong Zhao, Mingming He, Hongbin Cao, Xiaohong Zheng, Wenfang Gao, Yong Sun, He Zhao, Dalong Liu, Yanling Zhang, Zhi Sun. Investigation of solution chemistry to enable efficient lithium recovery from low-concentration lithium-containing wastewater[J]. Front. Chem. Sci. Eng., 2020, 14(4): 639-650.
[3] Siming Chen, Yue Wu, Geoffrey W. Stevens, Guoping Hu, Wenshou Sun, Kathryn A. Mumford. Precipitation study of CO2-loaded glycinate solution with the introduction of ethanol as an antisolvent[J]. Front. Chem. Sci. Eng., 2020, 14(3): 415-424.
[4] Xingfu SONG, Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer[J]. Front Chem Sci Eng, 2013, 7(2): 130-138.
[5] Xinmei LIU, Shaofen BAI, Huidong ZHUANG, Zifeng YAN. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2[J]. Front Chem Sci Eng, 2012, 6(1): 47-52.
[6] Xingfu SONG, Shuying SUN, Dengke ZHANG, Jin WANG, Jianguo YU. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization[J]. Front Chem Sci Eng, 2011, 5(4): 416-421.
[7] Nana QI, Hui WANG, Kai ZHANG, Hu ZHANG. Numerical simulation of fluid dynamics in the stirred tank by the SSG Reynolds Stress Model[J]. Front Chem Eng Chin, 2010, 4(4): 506-514.
[8] Gujun WAN, Guogang SUN, Cuizhi GAO, Ruiqian DONG, Ying ZHENG, Mingxian SHI. Modeling the gas flow in a cyclone separator at different temperature and pressure[J]. Front Chem Eng Chin, 2010, 4(4): 498-505.
[9] Hui FAN, Huayan ZHENG, Zhong LI. Preparation of Cu/ZnO/Al2O3 catalyst under microwave irradiation for slurry methanol synthesis[J]. Front Chem Eng Chin, 2010, 4(4): 445-451.
[10] ZHANG Dongxiang, XUE Min, XU Hang, XU Wenguo, TARASOV V. Preparation and photocatalytic kinetics of nano-ZnO powders by precipitation stripping process[J]. Front. Chem. Sci. Eng., 2008, 2(3): 319-324.
[11] GAO Sujun, SUN Yaqin, XIU Zhilong. Separation of 1,3-propanediol from glycerol-based fermentations of Klebsiella pneumoniae by alcohol precipitation and dilution crystallization[J]. Front. Chem. Sci. Eng., 2007, 1(2): 202-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed