Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 124-131    https://doi.org/10.1007/s11705-017-1676-5
REVIEW ARTICLE
Advances in the slurry reactor technology of the anthraquinone process for H2O2 production
Hongbo Li1, Bo Zheng1, Zhiyong Pan1, Baoning Zong1(), Minghua Qiao2
1. Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
2. Department of Chemistry, Fudan University, Shanghai 200433, China
 Download: PDF(196 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper overviews the development of the anthraquinone auto-oxidation (AO) process for the production of hydrogen peroxide in China and abroad. The characteristics and differences between the fixed-bed and fluidized-bed reactors for the AO process are presented. The detailed comparison indicates that the production of hydrogen peroxide with the fluidized-bed reactor has many advantages, such as lower operation cost and catalyst consumption, less anthraquinone degradation, higher catalyst utilization efficiency, and higher hydrogenation efficiency. The key characters of the production technology of hydrogen peroxide based on the fluidized-bed reactor developed by the Research Institute of Petroleum Processing, Sinopec are also disclosed. It is apparent that substituting the fluidized-bed reactor for the fixed-bed reactor is a major direction of breakthrough for the production technology of hydrogen peroxide in China.

Keywords anthraquinone process      fixed-bed reactor      slurry-bed reactor      hydrogen peroxide     
Corresponding Author(s): Baoning Zong   
Just Accepted Date: 07 July 2017   Issue Date: 26 February 2018
 Cite this article:   
Hongbo Li,Bo Zheng,Zhiyong Pan, et al. Advances in the slurry reactor technology of the anthraquinone process for H2O2 production[J]. Front. Chem. Sci. Eng., 2018, 12(1): 124-131.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1676-5
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/124
Fig.1  The production routes of the AO process
Item First generation technology Second generation technology
Reactor Slurry stirring tank reactor Trickle-bed reactor
Catalyst Raney Ni leached from 30?50 mesh of Ni-Al alloy; easy to prepare; self-ignition 0.3±0.02% Pd/Al2O3; 3 mm in diameter extrudate
Hydrogenation activity ≥9 g H2O2/L of working solution 6–7 g H2O2/L of working solution
Selectivity Acceptable High
Filtration Inside back-washable primary filters; outside safety filter Safety filter
Structure Complicated; carefully designed mechanical stirrer and seal Simple; gas and liquid distributors
Tab.1  Highlights of the characteristics of the hydrogenation steps in the first generation technology and second generation technology for the production of hydrogen peroxide via the AO process
Fig.2  Block diagram of the AO process for the production of hydrogen peroxide
Item Domestic companies FMC MGC Solvay Degussa Arkema
Working solution Solvent 1 AR AR AR AR AR AR
Solvent 2 TOP TOP TOP
Solvent 3 TBU TBU 2-MCHA
AQ EAQ EAQ AAQ EAQ EAQ EAQ
Solubility of AQ /(g?L−1) 125–140 160–180 250–300 160–180 160–180 160–180
Pd mass fraction /% 0.3 0.3 1–2 1–2 1–2 1–2
Hydrogenation Reactor Fixed bed Fixed bed Fluidized bed Fluidized bed Fluidized bed Fluidized bed
Hydrogenation efficiency/(g?L−1) 7–8 10–12 15–18 12–15 11–15 11–14
Extraction H2O2 /% 27.5–35 27.5–35 45–48 43–46 40–45 40–45
Tab.2  The comparison of the technological parameters of main companies
Item Fluidized-bed reactor (a foreign company) Fixed-bed reactor (China) Fixed-bed reactor (China) optimized
Main material EAQ /(kg?tH2O2−1) 0.7 1.8 1.1
AR /(kg?tH2O2−1) 0.8 10.9 9
TOP /(kg?tH2O2−1) 0.8 (TBU) 1.3 0.54
H2 /(Nm3?tH2O2−1) 720 737 720
H3PO4/(kg?tH2O2−1) 0.6 0.9 0.8
Al2O3 /(kg?tH2O2−1) 3.5 12.8 9
Pd-based catalyst /(kg?tH2O2−1) 0.02 (Pd 2%) 0.4 (Pd 0.3%) 0.252 (Pd 0.3%)
Utilities Cooling water /(t?tH2O2−1) 228
Electricity /(kWh?tH2O2−1) 700 742
Steam /(t?tH2O2−1) 1.6
Capacity/(t?a−1) 30000 22000 30000
Tab.3  The consumption of the processes using the fluidized- or fixed-bed reactor
Fig.3  Pilot plant of hydrogen peroxide production in Shijiazhuang
1 Jose M C M,  Gema B B,  Jose L G F. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angewandte Chemie International Edition, 2006, 45: 6962–6984
2 Rosaria C, Lorenzo  A, Francesco M,  Mario P. Hydrogen peroxide: A key chemical for today’s sustainable development. ChemSusChem, 2016, 9: 1–9
3 Pan Z, Gao  G, Yang K,  Zong B H. H2O2 production technology with slurry reactor. Scientia Sinica Chimica, 2015, 45(5): 541–546 (in Chinese)
4 Roberts H C. Production of hydrogen peroxide by the partial oxidation of alcohols. US Patent, 2479111, 1949-08-16
5 Rust F F. Verfahren zur herstellung von wasserstoffperoxyd. DE Patent, 935303, 1955-11-17
6 Foller P C, Bombard  R T. Processes for the production of mixtures of caustic soda and hydrogen-peroxide via the reduction of oxygen. Journal of Applied Electrochemistry, 1995, 25(7): 613–627
7 Chen A, Zhu  Q, Zhao Y,  Tastumi Y,  Iyoda T. Novel catalysts of Au/SiO2 hybrid nanorod arrays for the direct formation of hydrogen peroxide. Particle & Particle Systems Characterization, 2013, 30(6): 489–493
8 Edwards J K, Solsona  B E, Landon  P, Carley A F,  Herzing A,  Kiely C J,  Hutchings G J. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. Journal of Catalysis, 2005, 236: 69–79
9 Pashkova A, Dittmeyer  R, Kaltenborn N. Experimental study of porous tubular catalytic membranes for direct synthesis of hydrogen peroxide. Chemical Engineering Journal, 2010, 165(3): 924–933
10 Paparatto G, D’Aloisio  R. Catalyst and process for the direct synthesis of hydrogen peroxide. US Patent, 6630118, 2003-10-7 
11 Paparatto G, D’Aloisio  R. Catalyst and process for the direct synthesis of hydrogen peroxide. US Patent, 7122501, 2006-10-17 
12 Gabriele C, Roland  D, Siglinda P,  Martin R. Tubular inorganic catalytic membrane reactors: Advantages and performance in multiphase hydrogenation reactions. Catalysis Today, 2003, 79-80: 139–149
13 Zudin V V, Likholobov  V A, Yermakov  Y I. Catalytic synthesis of hydrogen peroxide from oxygen and water in the presence of carbon monoxide and phosphine complexes of palladium. Kinetics and Catalysis, 1979, 20: 1559–1600
14 Goor G, Kunkel  W, Weiberg O. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 1989, 443–466
15 Kirchner J R. Kirk-Othmer Encyclopedia of Chemical Technology. New York: Wiley, 1979, 12–38
16 Ren M, Mao  M, Duan X,  Song Q. Hydrogen peroxide synthesis by direct photoreduction of 2-ethylanthraquinone in aerated solutions. Journal of Photochemistry and Photobiology A Chemistry, 2011, 217: 164–168
17 Chen Q. Development of an anthraquinone process for the production of hydrogen peroxide in a trickle bed reactor—from bench scale to industrial scale. Chemical Engineering and Processing, 2008, 47: 787–792
18 Chen Q. Toward cleaner production of hydrogen peroxide in China. Journal of Cleaner Production, 2006, 14: 708–712
19 Chen Q. Booming hydrogen peroxide industry in China. China Chemical Reporter, 2006, 17(12): 19–20
20 Yang X, Qing  G, Fu Q,  Fang X. Optimization and reforming for hydrogen peroxide production unit by anthraquinone method.  Inorganic Chemicals Industry, 2013, 45(11): 35–49 (in Chinese)
21 Tan J, Luo  G. Hydrogenation method for production of hydrogen peroxide by anthraquinone process.  CN Patent, 102009960A, 2011-04-13
22 Tan J, Luo  G. Oxidation method for preparing hydrogen peroxide by anthraquinone method. CN Patent, 102009961A, 2011-04-13
23 Kou Z, Zhu  A, Su G,  Fang X, Guo  J. Application research of tetrabutyl urea in hydrogen peroxide preparation by anthraquinone process.  Chemical Propellants & Polymeric Materials, 2005, 3(5): 21–25 (in Chinese)
24 Liu H, Fang  X, Jia L,  Liu Q. Improvement of working solution for H2O2 production by anthraquinone method. Acta Petrolei Sinica, 2015, 31(1): 72–77 (Petroleum Processing Section) (in Chinese)
25 Qiao Y, Wan  S. Comparison of traditional process and all-acid process of hydrogen peroxide production by anthraquinone method.  Contemporary Chemical Industry, 2016, 45(1): 185–188 (in Chinese) 
26 Jiang H, Ma  J. Characteristic research on new-style working solution hydrogenation reactor in hydrogen peroxide plant by anthraquinone process.  Chemical Engineering Design Communications, 2015, 41(1): 82–84 (in Chinese) 
27 Jia X, Yang  Y, Liu G,  Pan Z, Tong  J. Measurement of the solubilities of 2-ethylanthraquinone and 2-amylanthraquinone in TMB/DIBC mixed solvents and their correlation with thermodynamic equations.  Journal of Chemical Engineering of Chinese Universities, 2014, 28(6): 1183–1189 (in Chinese) 
28 Drelinkiewicz A, Pukkinen  A, Kangas R,  Laitinen R. Hydrogenation of 2-ethylanthraquinone over Pd-SiO2 and Pd-Al2O3 in the fixed-bed reactor. The effect of the type of support. Catalysis Letters, 2004, 94: 157–170
29 Kunkel W, Kwmnade  J. Continuous process for the production of hydrogen peroxide according to the anthraquinone process. US Patent, 4428923, 1984-01-31
30 Boettcher A, Henkelmann  J. Verfahren zur suspensionshydrierung einer anthrachinon-verbindung in einem speziellen reaktor zur herstellung von wasserstoffperoxid. DE Patent, 19808385, 1999-09-029
31 Wang W, Pan  Z, Li W,  Zheng B,  Zong B. Recent advances in development of the fluidized bed and fixed bed in the anthraquinone route.  Chemical Industry and Engineering Progress, 2016, 35(6): 1766–1773 (in Chinese) 
32 Hu C, Su  G. Hydrogenation process of hydrogen peroxide fluidized bed by anthraquinone. CN Patent, 1817838A, 2006-08-16 
33 Meng X, Chen  X. Method for hydrogenizing alkyl anthraquinone. CN Patent, 1616345A, 2005-05-18
34 Liu B, Qiao  M, Deng J,  Fan K, Zhang  X, Zong B. Skeletal Ni catalyst prepared from a rapidly quenched Ni-Al alloy and its high selectivity in 2-ethylanthraquinone hydrogenation.  Journal of Catalysis, 2001, 204: 512–515
35 Hu H, Wang  Y, Qiao M,  Fan K, Zong  B, Zhang X,  Li H. Effect of Mo on the structure and catalytic behavior of the rapidly quenched skeletal Ni–Mo catalysts.  Acta Chimica Sinica, 2004, 64(14): 1281–1286 (in Chinese)
36 Hu H, Xie  F, Pei Y,  Qiao M, Yan  S, He H,  Fan K, Li  H, Zong B,  Zhang X. Skeletal Ni catalysts prepared from Ni-Al alloys rapidly quenched at different rates: Texture, structure and catalytic performance in chemoselective hydrogenation of 2-ethylanthraquinone. Journal of Catalysis, 2006, 237(1): 143–151
37 Meng X, Chen  X. Process for hydrogenation of alkyl anthraquinone by using maqnetically stabilized bed. CN Patent, 1690035A, 2005-11-02
38 Meng X, Lu  L. Precious metal carrying hydrogenation catalyst. CN Patent, 1541766A, 2004-11-03
39 Peng M, Guo  J. Hydrogenation method for producing hydrogen peroxide and device adopting hydrogenation method. CN Patent, 104150447A, 2014-11-19 
[1] Enxian Yuan, Xiangwei Ren, Li Wang, Wentao Zhao. A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al 2O3 catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(2): 177-184.
[2] Hainan SHI, Yaquan WANG, Guoqiang WU, Wenping FENG, Yi Lin, Teng ZHANG, Xing JIN, Shuhai WANG, Xiaoxue WU, Pengxu YAO. Deactivation and regeneration of TS-1/SiO2 catalyst for epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor[J]. Front Chem Sci Eng, 2013, 7(2): 202-209.
[3] CHENG Yongxi, LI Hongtao, WANG Li, LÜ Shuxiang. Reactive extraction for preparation of hydrogen peroxide under pressure[J]. Front. Chem. Sci. Eng., 2008, 2(3): 335-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed