Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (2) : 202-209    https://doi.org/10.1007/s11705-013-1328-3
RESEARCH ARTICLE
Deactivation and regeneration of TS-1/SiO2 catalyst for epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor
Hainan SHI, Yaquan WANG(), Guoqiang WU, Wenping FENG, Yi Lin, Teng ZHANG, Xing JIN, Shuhai WANG, Xiaoxue WU, Pengxu YAO
Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(197 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

TS-1/SiO2 catalyst for the epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor has been investigated. The catalyst activity decreases gradually with the online reaction time, but the selectivity of propylene epoxide is kept at about 93%. The fresh, deactivated and regenerated catalysts were characterized with X-ray diffraction, Fourier transform infrared spectroscopy, ultra-violet-visible diffuse reflectance, Brunner-Emmett-Teller method and thermogravimetric analysis, and the deactivated catalyst was regenerated with H2O2/methanol solution. Compared with the fresh catalyst, both the framework structure and the content of titanium in the framework of the deactivated and regenerated TS-1/SiO2 catalysts were not changed. The major reason of the catalyst deactivation was the blockage of the channels of the catalyst by bulky organic by-products, which covered the active centers of titanium in TS-1. The deposited materials on the deactivated TS-1/SiO2 catalyst could be removed by treatment with hydrogen peroxide/methanol solution or pure methanol; the higher the treatment temperature and the higher the concentration of H2O2 in methanol, the higher the extent of the regeneration. The regeneration treatment did not influence the product selectivity in the propylene epoxidation.

Keywords TS-1/SiO2, epoxidation of propylene, fixed-bed reactor, deactivation      regeneration     
Corresponding Author(s): WANG Yaquan,Email:yqwang@tju.edu.cn   
Issue Date: 05 June 2013
 Cite this article:   
Hainan SHI,Yaquan WANG,Guoqiang WU, et al. Deactivation and regeneration of TS-1/SiO2 catalyst for epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor[J]. Front Chem Sci Eng, 2013, 7(2): 202-209.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1328-3
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I2/202
Fig.1  The conversion of HO and the selectivity of products vs. reaction time. Reaction conditions: 2.5 MPa, 40°C, HO (30 wt-%), sodium acetate (100 ppm), CHOH ∶ HO ∶ HO= 6.1 ∶ 1.0 ∶ 2.3 (wt ratio), total WHSV, 1.77 h and WHSV of propylene, 0.85 h
Fig.2  XRD patterns of TS-1/SiO catalysts: (1) fresh catalyst, (2) deactivated catalyst, (3) regenerated catalyst.
Catalyst sampleRelative crystallinity/%I960/I550
Fresh1000.48
Deactivated670.41
Regenerated920.46
Tab.1  Data of XRD and FT-IR spectra of the TS-1/SiO catalysts
Fig.3  FT-IR spectra of TS-1/SiO catalysts: (1) fresh catalyst, (2) deactivated catalyst, and (3) regenerated catalyst
Fig.4  UV-vis spectra of TS-1/SiO catalysts: (1) fresh catalyst, (2) deactivated catalyst, and (3) regenerated catalyst
CatalystSBET/(m2?g-1)SMicropore/(m2?g-1)Vtatol/(cm3?g-1)VMicropore/(cm3?g-1)
Fresh3212720.4150.353
Deactivated145870.2440.123
Regenerated3022540.4040.342
Tab.2  Specific surface areas and pore volumes of the TS-1/SiO catalysts
Fig.5  N adsorption isotherms of TS-1/SiO catalysts: (1) fresh catalyst, (2) deactivated catalyst, (3) regenerated catalyst
Fig.6  TG curves of TS-1/SiO catalysts: (1) fresh catalyst, (2) deactivated catalyst, (3) regenerated catalyst.
Fig.7  The performances of the deactivated catalyst regenerated at different temperatures for propylene epoxidation. (a) the conversion of HO, and (b) the selectivities of PO and MME. Regeneration conditions: 2.5 MPa, HO (5 wt-%) in methanol, flow rate (1 mL/min), regeneration time 4 h. Reaction conditions: 2.5 MPa, 40°C, methanol (CHOH ∶ HO ∶ HO=6.1 ∶ 1.0 ∶ 2.3, wt ratio), the total WHSV, 2.14 h, and WHSV of CH, 0.85 h
Fig.8  The performances of the deactivated catalyst regenerated with different concentration of HO/methanol solution or pure methanol for propylene epoxidation: (a) the conversion of HO, and (b) the selectivities of PO and MME. Regeneration conditions: 2.5 MPa, 100°C, flow rate (1 mL/min), regeneration time 4 h. Reaction conditions: 2.5 MPa, 40°C, CHOH ∶ HO ∶ HO= 6.1 ∶ 1.0 ∶ 2.3 (wt ratio), the total WHSV, 2.14 h, and WHSV of CH, 0.85 h
Fig.9  The performances of the deactivated catalyst regenerated with different regeneration steps for propylene epoxidation: (a) the conversion of HO, and (b) the selectivities of PO and MME. Regeneration conditions: (1) 2.5 MPa, 150°C, methanol as solvent, flow rate (1 mL/min), regeneration time 8 h, (2) 2.5 MPa, 100°C, aqueous hydrogen peroxide solution (5 wt-%), flow rate (1 mL/min), regeneration time 4 h, then temperature raised 150°C, methanol as solvent, flow rate (1 mL/min), regeneration time 4 h. Reaction conditions: 2.5 MPa, 40°C, CHOH ∶ HO ∶ HO= 6.1 ∶ 1.0 ∶ 2.3 (wt ratio), methanol as solvent, the total WHSV, 2.14 h, and WHSV of CH, 0.85 h
1 Kirk R O, Dempsey T J. Kirk-Othmer Encyclopedia of Chemical Technology. New York: Wiley, 1982, 19, 246–248
2 Zuo Y, Wang M L, Song W C, Wang X S, Guo X W. Characterization and catalytic performance of deactivated and regenerated TS1 extrudates in a pilot plant of propene epoxidation. Industrial & Engineering Chemistry Research , 2012, 51(32): 10586-10594
doi: 10.1021/ie300581z
3 Huang J H, Takei T, Ohashi H, Haruta M.Propene epoxidation with oxygen over gold clusters: Role of basic salts and hydroxides of alkalis. Applied Catalysis A: General, 2012, 435-436 : 115-122
4 Wang R P, Guo X W, Wang X S, Hao J Q. Propylene epoxidation over silver supported on titanium silicalite zeolite. Catalysis Letters , 2003, 90(1-2): 57-67
doi: 10.1023/A:1025816226760
5 Taramasso M, Peregoand G, Notari B. U S. Patent, 4410501, 1983-10-18
6 Taramasso M, Manara G, Fattore V, Notari B. U S. Patent, 4666692, 1987-05-19
7 Martens J A, Buskens P, Jacobs P A, van der Pol A, van Hooff J H C, Ferrini C, Kouwenhoven H W, Kooyman P J, van Bekkum H. Hydroxylation of phenol with hydrogen peroxide on EUROTS-1 catalyst. Applied Catalysis A, General , 1993, 99(1): 71-84
doi: 10.1016/0926-860X(93)85040-V
8 Clerici M G, Bellussi G, Romano U. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. Journal of Catalysis , 1991, 129(1): 159-167
doi: 10.1016/0021-9517(91)90019-Z
9 Tvaruzkova Z, Zilkova N. Incorporation of titanium into the framework sites of Na-zeolites using TiCl4: Catalytic activity in the ammoximation of cyclohexanone to cyclohexanone oxime. Applied Catalysis A, General , 1993, 103(1): L1-L4
doi: 10.1016/0926-860X(93)85167-N
10 Clerici M G. Oxidation of saturated hydrocarbons with hydrogen peroxide, catalysed by titanium silicalite. Applied Catalysis , 1991, 68(1): 249-261
doi: 10.1016/S0166-9834(00)84106-8
11 Maspero F, Romano U. Oxidation of alcohols with H2O2 catalyzed by titanium silicalite-1. Journal of Catalysis , 1994, 146(2): 476-482
doi: 10.1006/jcat.1994.1085
12 Wang X S, Guo X W. Synthesis, characterization and catalytic properties of low cost titanium silicalite. Catalysis Today , 1999, 51(1): 177-186
doi: 10.1016/S0920-5861(99)00020-6
13 Li G, Wang X S, Yan H S, Liu Y H, Liu X W. Epoxidation of propylene using supported titanium silicalite catalysts. Applied Catalysis A, General , 2002, 236(1-2): 1-7
doi: 10.1016/S0926-860X(02)00288-0
14 Tullo A H, Short P L. Propylene oxide routes take off. Chemical and Engineering News , 2006, 84(41): 22-23
doi: 10.1021/cen-v084n041.p022
15 Perego C, Carati A, Ingallina P, Mantegazza M A, Bellussi G. Production of titanium containing molecular sieves and their application in catalysis. Applied Catalysis A, General , 2001, 221(1-2): 63-72
doi: 10.1016/S0926-860X(01)00797-9
16 Thiel G F, Roland E. Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: deactivation and regeneratiom of the catalyst. Journal of Molecular Catalysis A Chemical , 1998, 132(2-3): 281-292
doi: 10.1016/S1381-1169(97)00276-8
17 Yan H S, Wang X S, Liu J, Guo X W, Li G. Study on the TS-1 deactivation during propylene epoxidation. Acta Petrolei Sinica , 2002, 18(1): 46-51 (Petroleum Processing Section)
18 Chen J X, Mi Z T, Wu Y L, Li W, Li Z H. Deactivation of the titanium silicalite catalyst in propylene epoxidation. Journal of Fuel Chemistry and Technology , 2003, 31(1): 80-85
19 Crocco G L, Zajacek J G. U S. Patent, 5741749, 1998-04-21
20 Catinat J P, Strebelle M. U S. Patent, 6169050, 2001-01-02
21 Mantegazza M A, Balducci L, Rivetti F.U S. Patent, 6403514, 2002-06-11
22 Grosch G H, Muller U, Walch A, Reiber N, Harder W. U S. Patent, 6710002, 2004-03-23
23 Carroll K M, Morales E, Han Y Z.U S. Patent, 5798313, 1998-08-25
24 Muller U, Teles J H, Wenzel A, Harder W, Rudolf P, Rehfinger A, Baler P, Reiber N. US Patent, 6790969, 2004-09-14
25 Han H Z, Carrol K M.US Patent, 6872679, 2005-03-29
26 Wang Q F, Li W, Chen J X, Wu Y L, Mi Z T. Deactivation and regeneration of titanium silicalite catalyst for epoxidation of propylene. Journal of Molecular Catalysis A Chemical , 2007, 273(1-2): 73-80
doi: 10.1016/j.molcata.2007.03.068
27 Carroll K M, Morales E, Han Y Z.US Patent, 5916835, 1999-06-29
28 Shaumont D. WO Patent, 9901445, 1999-01-14
29 Chang T.EP Patent, 1190770, 2002-03-27
30 Thiele G. US Patent, 5620935, 1997-04-15
31 Gilbeau P. WO Patent, 9818555, 1998-05-07
32 Mantegazza M A, Balducci L, Rivetti F.US Patent, 6403514, 2002-06-11
33 Wu G Q, Wang Y Q, Wang L N, Feng W P, Shi H N, Lin Y, Zhang T, Jin X, Wang S H, Wu X X, Yao P X. Epoxidation of propylene with H2O2 catalyzed by supported TS-1 catalyst in a fixed-bed reactor: experiments and kinetics. Chemical Engineering Journal , 2013, 215-216: 306-314
doi: 10.1016/j.cej.2012.11.055
34 Li G, Wang X S, Yan H S, Chen Y Y, Su Q S. Effect of sodium ions on propylene epoxidation catalyzed by titanium silicalite. Applied Catalysis A, General , 2001, 218(1): 31-38
doi: 10.1016/S0926-860X(01)00607-X
35 Astorino E, Peri J B, Willey R J, Busca G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. Journal of Catalysis , 1995, 157(2): 482-500
doi: 10.1006/jcat.1995.1313
36 Armaroli T, Milella F, Notari B, Willey R J, Busca G. A spectroscopic study of amorphous and crystalline Ti-containing silicas and their surface acidity. Topics in Catalysis , 2001, 15(1): 63-71
doi: 10.1023/A:1009023930284
37 Capel-Sanchez M C, Campos-Martin J M, Fierro J L G. Impregnation treatments of TS-1 catalysts and their relevance in alkene epoxidation with hydrogen peroxide. Applied Catalysis A, General , 2003, 246(1): 69-77
doi: 10.1016/S0926-860X(02)00661-0
38 Sanz R, Serrano D P, Pizarro P, Moreno I. Hierarchical TS-1 zeolite synthesized from SiO2 TiO2 xerogels imprinted with silanized protozeolitic units. Chemical Engineering Journal , 2011, 171(3): 1428-1438
doi: 10.1016/j.cej.2011.02.036
39 Marra G L, Artioli G, Fitch A N, Milanesio M, Lamberti C. Orthorhombic to monoclinic phase transition in high-Ti-loaded TS-1: An attempt to locate Ti in the MFI framework by low temperature XRD. Microporous and Mesoporous Materials , 2000, 40(1-3): 85-94
doi: 10.1016/S1387-1811(00)00244-4
40 Reddy J S, Sivasanker S, Ratnasamy P. Hydroxylation of phenol over Ts-2, a titanium silicate molecular sieve. Journal of Molecular Catalysis , 1992, 71(3): 373-381
doi: 10.1016/0304-5102(92)85027-D
41 Huybrechts D R C, Buskens P L, Jacobs P A. Physicochemical and catalytic properties of titanium silicalites. Journal of Molecular Catalysis , 1992, 71(1): 129-147
doi: 10.1016/0304-5102(92)80012-6
42 Li G, Wang X S, Guo X W, Liu S, Zhao Q, Bao X H, Lin L W. Titanium species in titanium silicalite TS-1 prepared by hydrothermal method. Materials Chemistry and Physics , 2001, 71(2): 195-201
doi: 10.1016/S0254-0584(01)00281-4
43 Liu H, Lu G Z, Guo Y L, Guo Y, Wang J S. Deactivation and regeneration of TS-1/diatomite catalyst for hydroxylation of phenol in fixed-bed reactor. Chemical Engineering Journal , 2005, 108(3): 187-192
doi: 10.1016/j.cej.2005.01.011
[1] Jasmin Shah, M. Rasul Jan, Attaul Haq, Younas Khan. Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies[J]. Front Chem Sci Eng, 2013, 7(4): 428-436.
[2] Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU. Progress of three-dimensional macroporous bioactive glass for bone regeneration[J]. Front Chem Sci Eng, 2012, 6(4): 470-483.
[3] Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE. Effective regeneration of thermally deactivated commercial V-W-Ti catalysts[J]. Front Chem Sci Eng, 2012, 6(1): 38-46.
[4] Jianglong YU, Liping CHANG, Fan LI, Kechang XIE. A review on research and development of iron-based sorbents for removal of hydrogen sulfide from hot coal gases[J]. Front Chem Eng Chin, 2010, 4(4): 529-535.
[5] Wei LI, Jinju GUO, Jiejie HUANG, Jiaotao ZHAO. Sulfidation/regeneration multicycle testing of nickel-modified ZnFe2O4 desulphurization sorbent[J]. Front Chem Eng Chin, 2010, 4(4): 435-440.
[6] Xiurong REN, Weiren BAO, Fan LI, Liping CHANG, Kechang XIE. Desulfurization performance of iron-manganese-based sorbent for hot coal gas[J]. Front Chem Eng Chin, 2010, 4(4): 429-434.
[7] Ruizhuang ZHAO, Ju SHANGGUAN, Yanru LOU, Jin SONG, Jie MI, Huiling FAN. Regeneration of Fe2O3-based high-temperature coal gas desulfurization sorbent in atmosphere with sulfur dioxide[J]. Front Chem Eng Chin, 2010, 4(4): 423-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed