Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (4) : 428-436    https://doi.org/10.1007/s11705-013-1358-x
RESEARCH ARTICLE
Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies
Jasmin Shah(), M. Rasul Jan, Attaul Haq, Younas Khan
Institute of Chemical Sciences, University of Peshawar, Peshawar Pakistan
 Download: PDF(172 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An adsorption study of Rhodamine B (RB) dye from aqueous solutions was carried out using walnut shells pretreated by different methods. In addition to the effects of the pretreatment, the effects of various parameters like pH, adsorbent dose, contact time, initial dye concentration and temperature on the adsorption of RB was studied. The adsorption process was highly pH dependent and a maximum adsorption was achieved at pH 3.0. The best fit for the rates of dye adsorption was a pseudo-second-order kinetic model with good correlation coefficients (R2>0.99). Langmuir isotherms were used to determine that the maximum loading capacity of the different walnut shells and the RB capacities ranged from 1.451–2.292 mg·g-1. The dye adsorption was also evaluated thermodynamically. Positive standard enthalpy (?H°) values were obtained indicating that the RB adsorption process is endothermic as well as ?G° and ?S° values showed that adsorption process is spontaneous with an increased randomness at the solid-liquid interface. Desorption studies were carried out to explore the feasibility of regenerating the used walnut shells and it was found that 97.71%–99.17% of the retained RB was recovered with 0.1 mol?L-1 NaOH solution. The walnut shells were also successfully used to remove RB from industrial effluents.

Keywords Rhodamine B      walnut shell adsorption      kinetics      isotherms      regeneration     
Corresponding Author(s): Shah Jasmin,Email:jasminshah2001@yahoo.com   
Issue Date: 05 December 2013
 Cite this article:   
M. Rasul Jan,Attaul Haq,Younas Khan, et al. Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies[J]. Front Chem Sci Eng, 2013, 7(4): 428-436.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1358-x
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I4/428
Fig.1  Chemical structure of Rhodamine B
Fig.2  The effect of pH on RB adsorption (initial RB concentration 10 μg·mL, pH 2-8, contact time 30 min, adsorbent dose 0.05 g, volume of RB solution 50 mL)
Fig.3  The effect of adsorbent dose on RB adsorption (initial RB concentration 10 μg·mL, pH 3.0, contact time 30 min, adsorbent dose 0.01-0.07 g, volume of RB solution 50 mL)
Fig.4  The effect of contact time on RB adsorption (initial RB concentration 10 μg·mL, pH 3, contact time 20-120 min, adsorbent dose 0.05 g, volume of RB solution 50 mL)
Fig.5  Kinetic models of RB uptake (adsorbent dose 0.05 g, initial RB concentration 10 μg·mL, volume of RB solution 50 mL, pH 3.0)
Sorbentqe /(mg·g-1) (exp)Pseudo-first- order kinetic modelPseudo-second- order kinetic modeIntraparticle diffusion modelElovich model
K1 /min-1qe /(mg? g-) 1R2K2 /(g·mg-1 min-1)qe/(mg·g-1)R2Kint /(mg·g-1 min1/2)C /(mg·g-1)R2α /(mg·g-1·min-1)β /(g·mg-1R2
WS1409.330.036470.320.98027.40E-5500.000.999533.5177.270.978337.900.00860.9981
WS2362.400.027117.500.91572.46E-4384.610.997417.91182.110.8443183.640.0150.9104
WS3334.430.052575.430.92968.95E-5416.660.992126.5568.980.959735.510.0100.9798
Tab.1  Kinetic parameter for RB adsorption on WS1, WS2 and WS3
Fig.6  Freundlich isotherms for RB adsorption (initial RB concentration 10-60 μg·mL, pH 3.0, adsorbent dose 0.05 g, contact time 80 min, room temperature)
Fig.7  Langmuir isotherms for RB adsorption (initial RB concentration 10-60 μg·mL, pH 3.0, adsorbent dose 0.05 g, contact time 80 min, room temperature)
AdsorbentFreundlich modelLangmuir model
KF /(mg·g-1)n1/nR2R2KL /(L·g-1)Q0 /(mg·g-1)R2
WS10.4771.9150.5220.99390.99390.5092.2920.9807
WS20.6622.4810.4030.97120.97120.3012.1970.9904
WS30.2572.0830.4800.98460.98460.1851.5410.9627
Tab.2  Freundlich and Langmuir isotherm parameters for RB adsorption on WS1, WS2 and WS3
Fig.8  Plots of ln versus 1/ for the estimation of the thermodynamic parameters for RB adsorption (Initial RB concentration 10 μg·mL, pH 3.0, adsorbent dose 0.05 g, volume of RB solution 50 mL)
Adsorbent-?G°/(kJ·mol-1)?H° /(kJ mol-1)?S° /(kJ·K-1·mol-1)
313 K323 K333 K343 K353 K
WS134.22635.84837.10839.07440.67116.1440.160
WS239.52240.89842.80244.36645.79610.6990.160
WS324.89226.63227.58228.77729.67011.7480.117
Tab.3  Thermodynamic parameters for RB adsorption on WS1, WS2 and WS3
RB (μg added)RB (μg eluted)desorption/%
10099.17±0.8899.17
300297.34±0.9299.11
500488.59±1.2097.71
Tab.4  Desorption of RB from loaded WS using 0.1 M NaOH
Industryμg before adsorptionμg after adsorptionRemoval/%
Sample F12000.000100
Sample F22500.000100
Sample F3200.000100
Sample F4400.000100
Tab.5  Determination of RB in various samples
1 Laasri L, Elamrani M K, Cherkaoui O. Removal of two cationic dyes from a textile effluent by filtration-adsorption on wood sawdust. Environmental Science and Pollution Research International , 2007, 14(4): 237-240
doi: 10.1065/espr2006.08.331
2 Hamdaoui O. Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns. Journal of Hazardous Materials , 2006, 38(2): 293-303
doi: 10.1016/j.jhazmat.2006.04.061
3 Hameed B H, Din A T M, Ahmad A L. Adsorption of methylene blue onto bamboo based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials , 2007, 14(3): 819-825
doi: 10.1016/j.jhazmat.2006.07.049
4 Senturk H B, Ozdes D, Duran C. Biosorption of Rhodamine 6G from aqueous solutions onto almond shell (Prunus dulcis) as a low cost biosorbent. Desalination , 2010, 252(1-3): 81-87
doi: 10.1016/j.desal.2009.10.021
5 Robinson T, McMullan G, Marchant R, Poonam N. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology , 2001, 77(3): 247-255
doi: 10.1016/S0960-8524(00)00080-8
6 Figueiredo S A, Boaventura R A, Loureiro J M. Color removal with natural adsorbents: Modeling, simulation and experimental. Separation and Purification Technology , 2000, 20(1): 129-141
doi: 10.1016/S1383-5866(00)00068-X
7 Vilar V J P, Botelho C M S, Boaventura R A R. Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behavior. Journal of Hazardous Materials , 2007, 147(1-2): 120-132
doi: 10.1016/j.jhazmat.2006.12.055
8 Demirbas E, Kobya M, Sulak M T. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon. Bioresource Technology , 2008, 99(13): 5368-5373
doi: 10.1016/j.biortech.2007.11.019
9 Guo Y, Zhao J, Zhang H, Yang S, Qi J, Wang Z, Xu H. Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions. Dyes and Pigments , 2005, 66(2): 123-128
doi: 10.1016/j.dyepig.2004.09.014
10 Khattri S D, Singh M K. Color removal from synthetic dye wastewater using a biosorbent. Water, Air, and Soil Pollution , 2000, 120(3/4): 283-294
doi: 10.1023/A:1005207803041
11 McKay G, Porter J F, Prasad G R. The removal of basic dyes aqueous solution by adsorption on low-cost materials. Water, Air, and Soil Pollution , 1999, 114(3/4): 423-438
doi: 10.1023/A:1005197308228
12 Mittal A, Krishnan L, Gupta V K. Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya. Separation and Purification Technology , 2005, 43(2): 125-133
doi: 10.1016/j.seppur.2004.10.010
13 Hameed B H, Hakimi H. Utilization of durian (Durio zibethinus Murray) peel as low cost sorbent for the removal of acid dye from aqueous solutions. Biochemical Engineering Journal , 2008, 39(2): 338-343
doi: 10.1016/j.bej.2007.10.005
14 Ahmad A A, Hameed B H, Aziz N. Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. Journal of Hazardous Materials , 2007, 141(1): 70-76
doi: 10.1016/j.jhazmat.2006.06.094
15 Hameed B H, El-Khaiary M I. Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: Broad bean peels. Journal of Hazardous Materials , 2008, 154(1-3): 639-648
doi: 10.1016/j.jhazmat.2007.10.081
16 Serencam H, Gundogdu A, Uygur Y, Kemer B, Bulut V N, Duran C, Soylak M, Tufekci M. Removal of cadmium from aqueous solution by Nordmann fir (Abies nordmanniana (Stev.) Spach. Subsp. nordmanniana) leaves. Bioresource Technology , 2008, 99(6): 1992-2000
doi: 10.1016/j.biortech.2007.03.021
17 Hasar H. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials , 2003, 97(1-3): 49-57
doi: 10.1016/S0304-3894(02)00237-6
18 Pehlivan E, Altun T. Bioadsorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. Journal of Hazardous Materials , 2008, 155(1-2): 378-384
doi: 10.1016/j.jhazmat.2007.11.071
19 Altun T, Pehlivan E. Removal of Cr(VI) from aqueous solutions by modified walnut shells. Food Chemistry , 2012, 132(2): 693-700
doi: 10.1016/j.foodchem.2011.10.099
20 Al-Rashed S M, Al-Gaid A A. Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye on Duolite C-20 resin. Journal of Saudi Chemical Society , 2012, 16(2): 209-215
doi: 10.1016/j.jscs.2011.01.002
21 Wang J, Wang D, Zhang G, Guo Y, Liu J. Adsorption of Rhodamine B from aqueous solution onto heat-activated sepiolite. Wuhan University Journal of Natural Sciences , 2013, 18(3): 219-225
doi: 10.1007/s11859-013-0918-8
22 Rasalingam S, Peng R, Koodali R T. An investigation into the effect of porosities on the adsorption of Rhodamine B using titania-silica mixed oxide xerogels. Journal of Environmental Management , 2013, 128: 530-539
doi: 10.1016/j.jenvman.2013.06.014
23 Britton H T S. “Hydrogen Ions” Monographs on Applied Chemistry. New York , 1943, 313
24 Anandkumar J, Mandal B. Adsorption of chromium (VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies. Journal of Hazardous Materials , 2011, 186(2-3): 1088-1096
doi: 10.1016/j.jhazmat.2010.11.104
25 Selvan P P. Preethi Sm, Basakaralingan P, Thinakaran N, Sivasamy A, Sivanesan S. Removal of Rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. Journal of Hazardous Materials , 2008, 155: 39-44
doi: 10.1016/j.jhazmat.2007.11.025
26 Kyazs G Z, Lazaridis N K, Mitropoulos A C. Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach. Chemical Engineering Journal , 2012, 189-190(1): 148-159
doi: 10.1016/j.cej.2012.02.045
27 Noreen S, Bhatti H N, Nausheen S, Sadaf S, Ashfaq M. Batch and fixed bed adsorption study for the removal of Drimarine Black CL-B dye from aqueous solution using a lignocellulosic waste: A cost affective adsorbent. Industrial Crops and Products , 2013, 50(10): 568-579
doi: 10.1016/j.indcrop.2013.07.065
[1] Xuantao Wu, Jie Wang. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(2): 415-426.
[2] Shaojie Wang,Zhihong Ma,Ting Zhang,Meidan Bao,Haijia Su. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch[J]. Front. Chem. Sci. Eng., 2017, 11(1): 100-106.
[3] Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar. Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics and scale-up approach[J]. Front. Chem. Sci. Eng., 2016, 10(4): 499-508.
[4] Jinbo OUYANG, Jingkang WANG, Yongli WANG, Qiuxiang YIN, Hongxun HAO. Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride[J]. Front. Chem. Sci. Eng., 2015, 9(1): 94-104.
[5] Farouq TWAIQ,M.S. NASSER,Sagheer A. ONAIZI. Effect of the degree of template removal from mesoporous silicate materials on their adsorption of heavy oil from aqueous solution[J]. Front. Chem. Sci. Eng., 2014, 8(4): 488-497.
[6] Weixin ZHANG, Wenran ZHAO, Zaoyuan ZHOU, Zeheng YANG. Facile synthesis of α-MnO2 micronests composed of nanowires and their enhanced adsorption to Congo red[J]. Front Chem Sci Eng, 2014, 8(1): 64-72.
[7] Tiantian LIU, Yuanyuan RAN, Bochao WANG, Weibing DONG, Songgu WU, Junbo GONG. The dehydration behavior and non-isothermal dehydration kinetics of donepezil hydrochloride monohydrate (Form I)[J]. Front Chem Sci Eng, 2014, 8(1): 55-63.
[8] Xingfu SONG, Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer[J]. Front Chem Sci Eng, 2013, 7(2): 130-138.
[9] Xingfu SONG, Jingcai ZHAO, Yunzhao LI, Ze SUN, Jianguo YU. Thermal decomposition mechanism of ammonium sulfate catalyzed by ferric oxide[J]. Front Chem Sci Eng, 2013, 7(2): 210-217.
[10] Hainan SHI, Yaquan WANG, Guoqiang WU, Wenping FENG, Yi Lin, Teng ZHANG, Xing JIN, Shuhai WANG, Xiaoxue WU, Pengxu YAO. Deactivation and regeneration of TS-1/SiO2 catalyst for epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor[J]. Front Chem Sci Eng, 2013, 7(2): 202-209.
[11] Weixin ZHANG, Jie XING, Zeheng YANG, Mei KONG, Hongxu YAO. A chemical etching route to controllable fabrication of TiO2 hollow nanospheres for enhancing their photocatalytic activity[J]. Front Chem Sci Eng, 2013, 7(2): 192-201.
[12] T. A. Lasheen, M. E. El-Ahmady, H. B. Hassib, A. S. Helal. Oxidative leaching kinetics of molybdenum-uranium ore in H2SO4 using H2O2 as an oxidizing agent[J]. Front Chem Sci Eng, 2013, 7(1): 95-102.
[13] Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU. Progress of three-dimensional macroporous bioactive glass for bone regeneration[J]. Front Chem Sci Eng, 2012, 6(4): 470-483.
[14] Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE. Effective regeneration of thermally deactivated commercial V-W-Ti catalysts[J]. Front Chem Sci Eng, 2012, 6(1): 38-46.
[15] Hongman ZHANG, Qiang JIN, Rui XU, Lishi YAN, Zengxiang LIN. Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor[J]. Front Chem Sci Eng, 2011, 5(2): 252-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed