Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (2) : 210-217    https://doi.org/10.1007/s11705-013-1320-y
RESEARCH ARTICLE
Thermal decomposition mechanism of ammonium sulfate catalyzed by ferric oxide
Xingfu SONG(), Jingcai ZHAO, Yunzhao LI, Ze SUN, Jianguo YU
National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(216 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The decomposition mechanism of ammonium sulfate catalyzed by ferric oxide was investigated in this paper. The decomposition kinetics parameters were determined via a global optimization of the Kissinger iterative method using the non-isothermal thermogravimetric analysis data. The products and intermediates were synchronously characterized by X-ray diffraction and mass spectrometry. The obtained results indicate that the decomposition process of ammonium sulfate catalyzed by ferric oxide can be divided into four stages of which the activation energies are 123.64, 126.58, 178.77 and 216.99 kJ·mol-1 respectively. The decomposition mechanisms at the first and the fourth stage both belong to Mample power theorem, the second stage belongs to Avrami-Erofeev equation and the third belongs to contracting sphere (volume) equation. The corresponding pre-exponential factors (A) are calculated simultaneously.

Keywords ammonium sulfate      decomposition kinetics      ferric oxide      thermogravimetric analysis     
Corresponding Author(s): SONG Xingfu,Email:xfsong@ecust.edu.cn   
Issue Date: 05 June 2013
 Cite this article:   
Xingfu SONG,Jingcai ZHAO,Yunzhao LI, et al. Thermal decomposition mechanism of ammonium sulfate catalyzed by ferric oxide[J]. Front Chem Sci Eng, 2013, 7(2): 210-217.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1320-y
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I2/210
Fig.1  TG curve of the mixture with the mole ratio of 2 ∶ 1
Fig.2  MS curves of the gases generated in the decomposition of the mixture
Fig.3  XRD analysis of the solid residue at different temperatures
StageTemperature /KWeight loss/%Experimental TheoreticalReaction
1430-55612.8012.266(NH4)2SO4+Fe2O32(NH4)3Fe(SO4)3+6NH3+3H2O
2556-6127.756.134(NH4)3Fe(SO4)3+Fe2O36NH4Fe(SO4)2+6NH3+3H2O
3629-71014.6015.576NH4Fe(SO4)23Fe2(SO4)3+4NH3+N2+6H2O+3SO2
4740-92026.8028.302Fe2(SO4)32Fe2O3+6SO2+3O2
Tab.1  Thermal decomposition mechanism of (NH)SO catalyzed by FeO
Fig.4  TG curves of the mixture at different heating rates
StageHeating ratesT /K
2 K/min5 K/min10 K/min15 K/min
10.2501.90517.93527.02535.85
0.3509.43526.57535.65544.97
0.4514.95532.68541.82551.49
0.5519.15537.52546.67556.55
0.6522.15541.57550.72560.79
0.7525.73545.19554.26564.50
0.8528.55548.59557.53567.94
20.2554.72576.97585.76596.42
0.3559.15581.05590.36601.23
0.4562.81584.56594.26605.27
0.5566.02588.01597.78608.90
0.6569.81591.21601.67612.77
0.7574.56596.30608.60619.94
0.8579.53601.18614.22626.06
30.2656.53675.85685.71696.15
0.3663.74683.87694.38705.25
0.4668.96689.66700.55711.78
0.5673.08694.23705.40716.87
0.6676.54698.02709.40721.06
0.7679.50701.32712.83724.68
0.8682.16704.31715.88727.90
40.2831.89857.72871.30886.07
0.3842.65869.80883.81898.74
0.4851.13878.69892.94908.00
0.5857.15885.85900.22915.50
0.6862.77892.03906.44921.96
0.7867.84897.59911.97927.74
0.8872.66902.88917.15933.18
Tab.2  Temperatures corresponding to given conversion degrees at different heating rates at the four decomposition stages
StageT/KConversion degrees
2 K/min5 K/min10 K/min15 K/min
12450.47460.20200.13310.0944
2490.58430.24390.15920.1112
2530.71440.29420.19210.1314
2570.85680.35520.23170.1559
2610.97550.42840.27890.1862
23060.79200.25000.09340.0204
3090.85710.32910.13610.0340
3120.91810.41740.18900.0522
3150.96530.51150.24860.0794
3180.99580.59860.31830.1156
34020.55870.19320.12090.0801
4050.65300.22460.13970.0915
4080.76140.26200.16090.1043
4110.87880.30410.18520.1187
4140.97230.35360.21350.1353
45930.66610.26580.16920.1040
5980.76800.31360.19910.1224
6030.87150.36900.23470.1441
6080.95480.43260.27560.1700
6130.99450.50450.32310.2005
Tab.3  Conversion degrees corresponding to given temperatures at different heating rates at the four decomposition stages
No.Stage 1Stage 2Stage 3Stage 4
-kr2-kr2-kr2-kr2
11.50460.97682.20340.89191.77430.98321.64770.9713
21.64220.98072.43040.90531.89290.98581.76160.9748
31.69440.98212.51970.91031.93640.98671.80350.976
41.79940.98452.70010.91942.02370.98841.88760.9782
50.44990.98450.67500.91940.50590.98840.47190.9782
60.43050.98280.64180.91300.48970.98720.45620.9763
71.35590.97371.98090.88311.62900.98051.50940.9680
81.21750.97001.77480.87351.49210.97741.37930.9643
90.98130.98761.49180.93131.07900.99051.00860.9811
100.65420.98760.99450.93130.71930.99050.67240.9811
110.49070.98760.74590.93130.53950.99050.50430.9811
120.32710.98760.49730.93130.35970.99050.33620.9811
133.92520.98765.96720.93134.31600.99054.03440.9811
140.24530.98760.37300.93130.26980.99050.25220.9811
151.96260.98762.98360.93132.15800.99052.01720.9811
162.94390.98764.47540.93133.23700.99053.02580.9811
170.86090.98281.28360.91300.97950.98720.91260.9766
180.42560.93940.59940.79390.58710.95890.53670.9419
190.56860.96090.81020.84380.72380.97280.66720.9583
200.31670.91300.44870.74850.47450.94180.42970.9223
210.89970.98451.35010.91941.01190.98840.94380.9782
220.91960.98531.38440.92251.02840.98890.95970.9790
230.75230.97681.10170.89190.88720.98320.82380.9713
241.12850.97681.65260.89191.33080.98321.23570.9713
250.37620.97680.55090.89190.44360.98320.41190.9713
260.25080.97680.36720.89190.29570.98320.27460.9713
270.18810.97680.27540.89190.22180.98320.20600.9713
280.50510.99860.88600.99910.41300.99600.39820.9996
291.25740.99411.98770.95911.30020.99521.22200.9881
300.25250.99860.44300.99910.20650.99600.19910.9996
Tab.4  Slope, correlation coefficient of plot of ln() ln for 30 kinds of reaction models at the four decomposition stages
StageEa /kJ·mol-1lnA /s-1FunctionModelMechanism
1123.6419.67G(α) = -ln(1- α)Mample power theoremnuclei generation and thesubsequent growing model, n =1
2126.586.37G(α) = [-ln(1- α)]2/3Avrami-Erofeev equationnuclei generation and thesubsequent growing model, n = 2/3
3178.773.87G(α) =1- (1- α)1/3Contracting sphere (volume) equationPhase boundary reaction model, n = 1/3
4216.991.73G(α) = -ln(1- α)Mample power theoremnuclei generation and thesubsequent growing model, n = 1
Tab.5  The activation energy, pre-exponential factor and the reaction function of the decomposition at four stages
No.Function nameMechanismIntegral function G(α)Differential function f(α)
1Parabolic line lawOne-dimensional diffusionα212α-1
2Valensi equationTwo-dimensional diffusionα+(1-α)ln?(1-α)[-ln?(1-α)]-1
3Ginstling-Brounstein equationThree-dimensional diffusion (cylindrical symmetry)1-23α-(1-α)2332[(1-α)-13-1]-1
4Jander equationThree-dimensional diffusion (spherical symmetry)[1-(1-α)13]232(1-α)23[1-(1-α)13]-1
5Jander equationThree-dimensional diffusion[1-(1-α)13]126(1-α)23[1-(1-α)13]12
6Jander equationThree-dimensional diffusion[1-(1-α)12]124(1-α)12[1-(1-α)12]12
7Inverse Jander equationThree-dimensional diffusion[(1+α)13-1]232(1+α)23[(1+α)13-1]-1
8Zhuralev-Lesokin-TempelmanequationThree-dimensional diffusion[(1-α)-13-1]232(1-α)43[(1-α)-13-1]-1
9Mample power theoremnuclei growth (n = 1)-ln?(1-α)1-α
10Avrami-Erofee equationRandom nucleation and nuclei growth (n = 2/3)[-ln?(1-α)]2332(1-α)[-ln?(1-α)]13
11Avrami-Erofee equationRandom nucleation and nuclei growth (n = 1/2)[-ln?(1-α)]122(1-α)[-ln?(1-α)]12
12Avrami-Erofee equationRandom nucleation and nuclei growth (n = 1/3)[-ln?(1-α)]133(1-α)[-ln?(1-α)]23
13Avrami-Erofee equationRandom nucleation and nuclei growth (n = 4)[-ln?(1-α)]414(1-α)[-ln?(1-α)]-3
14Avrami-Erofee equationRandom nucleation and nuclei growth (n = 1/4)[-ln?(1-α)]144(1-α)[-ln?(1-α)]34
15Avrami-Erofee equationRandom nucleation and nuclei growth (n = 2)[-ln?(1-α)]212(1-α)[-ln?(1-α)]-1
16Avrami-Erofee equationRandom nucleation and nuclei growth (n = 3)[-ln?(1-α)]313(1-α)[-ln?(1-α)]-2
17Contracting cylinder (area)Phase boundary reaction, (cylindrical symmetry)1-(1-α)122(1-α)12
18Reaction orderChemical reaction1-(1-α)313(1-α)-2
19Reaction orderChemical reaction1-(1-α)212(1-α)-1
20Reaction orderChemical reaction1-(1-α)414(1-α)-3
21Contracting sphere (volume)Phase boundary reaction, (spherical symmetry)1-(1-α)133(1-α)23
22Reaction orderChemical reaction1-(1-α)144(1-α)34
23Mampel Power theoremPhase boundary reaction, (One-dimension) n = 11-(1-α)11=α1
24Mampel Power theoremExponential nucleation (n = 3/2)α3223α-12
25Mampel Power theoremExponential nucleation (n = 1/2)α122α12
26Mampel Power theoremExponential nucleation (n = 1/3)α133α23
27Mampel Power theoremExponential nucleation (n = 1/4)α144α34
28Second orderChemical reaction(1-α)-1(1-α)2
29Reaction orderChemical reaction(1-α)-1-1(1-α)2
302/3 orderChemical reaction(1-α)-122(1-α)32
Tab.6  Thirty common kinetic mechanism functions
1 He X H, Yong Y M, Yu G Z, Zhang G J, Yang C, Jin X. Adsorption of caprolactam on surface of ammonium sulfate crystal. Journal of Chemical Industry and Engineering , 2010, 61(11): 2849–2854 (in Chinese)
2 Bai H, Biswas P, Keener T C. SO2 Removal by NH3 Gas Injection: Effects of Temperature and Moisture Content. Industrial & Engineering Chemistry Research , 1994, 33(5): 1231–1236
3 Xu C, Deng Y, Dong F, Xie Z, He J, Fu P. Study on preparation of ammonium sulfate by solid-phase ball milling from phosphogypsum. Non-Metallic Mines , 2012, 33(3): 62–65 (in Chinese)
4 Liu K W, Chen T L. Studies on the thermal decomposition of ammonium sulfate. Chemical Research and Application , 2002, 14(6): 737–738 (in Chinese)
5 Fan Y, Cao F. Thermal decomposition kinetics of ammonium sulfate. Journal of Chemical Engineering of Chinese Universities , 2011, 25(2): 341–346 (in Chinese)
6 Kiyoura R, Urano K. Mechanism, kinetics and equilibrium of thermal decomposition of ammonium sulfate. Industrial & Engineering Chemistry Process Design and Development , 1970, 9(4): 489–494
7 Singh Mudher K D, Keskar M, Venugopal V. Solid state reactions of CeO2, ThO2 and PuO2 with ammonium sulfate. Journal of Nuclear Materials , 1999, 265(1-2): 146–153
8 Wang W, Gu H M, Zhai Y C, Dai Y N. The research of magnesium extracted from low-grade magnesite by ammonium sulfate calcining method and the reaction kinetics. Journal of molecular science , 2009, 25(5): 305–310
9 Nagaishi T, Ishiyama S, Yoshimura J, Matsumoto M, Yoshinaga S. Reaction of ammonium sulfate with Aluminum oxide. Journal of Thermal Analysis , 1982, 23(1-2): 201–207
10 Mao L, T-Raissi A, Huang C, Muradov N Z. Thermal decomposition of (NH4)2SO4 in the presence of Mn3O4. International Journal of Hydrogen Energy , 2011, 36(10): 5822–5827
11 Scheidema M N, Taskinen P. Decomposition Thermadynamics of Magnesium Sulfate. Industrial & Engineering Chemistry Research , 2011, 50(16): 9550–9556
12 Hu R Z, Shi Q Z. Thermal analysis kinetic. Beijing: Science Press, 2011, 2–8
13 Brown M E, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson H L, Kemmer A, Keuleers R, Janssens J, Desseyn H O.Chao-Rui Li , Tong B. Tang, B.Roduit, J. Malek, T.Mitsuhashi. Computational aspects of kinetics analysis Part A: The ICTAC kinetics project-data, methods and results. Thermochimica Acta , 2000, 355(1-2): 35–42
14 Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan , 1965, 38(11): 1881–1886
15 Kissinger H E. Reaction kinetics in differential thermal analysis. Analytical Chemistry , 1957, 29(11): 1702–1706
16 Gao Z M, Nakada M, Amasaki I. A consideration of errors and accuracy in the isoconversional methods. Thermochimica Acta , 2001, 369(1-2): 137–142
17 Song X, Wang J, Luo Y, Liu G, Yu J. Thermal decomposition and non-isothermal kinetic evaluation of magnesium chloride hexammoniate. Journal of Chemical Industry and Engineering , 2008, 59(9): 2255–2259 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed