Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (1) : 100-106    https://doi.org/10.1007/s11705-017-1617-3
RESEARCH ARTICLE
Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch
Shaojie Wang,Zhihong Ma,Ting Zhang,Meidan Bao,Haijia Su()
Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(314 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The production of bio-hydrogen from raw cassava starch via a mixed-culture dark fermentation process was investigated. The production yield of H2 was optimized by adjusting the substrate concentration and the microorganism mixture ratio. A maximum H2 yield of 1.72 mol H2/mol glucose was obtained with a cassava starch concentration of 10 g/L to give a 90% utilization rate. The kinetics of the substrate utilization and of the generation of both hydrogen and volatile fatty acids were also investigated. The substrate utilization follows pseudo first order reaction kinetics, whereas the production of both H2 and the VFAs correlate with the Gompertz equation. These results show that cassava is a good candidate for the production of biohydrogen.

Keywords cassava      biohydrogen      mixed cultures      kinetics     
Corresponding Author(s): Haijia Su   
Just Accepted Date: 28 December 2016   Online First Date: 13 February 2017    Issue Date: 17 March 2017
 Cite this article:   
Shaojie Wang,Zhihong Ma,Ting Zhang, et al. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch[J]. Front. Chem. Sci. Eng., 2017, 11(1): 100-106.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1617-3
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I1/100
Fig.1  Cumulative H2 production and pH with time for different substrate concentrations for A1:B1=1:1. Filled symbols are cumulative H2 production and hollow symbols are pH
Substrate concentration /(g·L–1) H2 yield/(mol H2·mol–1 glucose) H2 composition in biogas /%
5 1.44 61
10 1.39 56
15 0.91 53
20 0.41 53
Tab.1  Hydrogen yields and concentration for different substrate concentrations
Fig.2  Types of VFAs produced with different substrate concentrations (A1:B1=1:1)
Fig.3  Cumulative H2 production with time with different mixture ratios
Fig.4  First order kinetic fit of substrate utilization at different mixture ratios
Group k Correlation coefficient
A1/B1=1/0.5 0.0299 0.9809
A1/B1=1/1 0.0283 0.9597
A1/B1=1/2 0.0260 0.9658
A1/B1=1/3 0.0266 0.9089
Tab.2  First order k values and correlation coefficients
Fig.5  Gompertz fitted curve for the cumulative H2 production for different mixture ratios
Fig.6  Gompertz fit curve of VFAs generation at different mixture ratios.

(a) A1/B1=1/0.5; (b) A1/B1=1/1; (c) A1/B1=1/2; (d) A1/B1=1/3

1 Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244
https://doi.org/10.1039/C4CS00126E
2 Jiang S P, Shen P K, Sun A X, Sun S, Qiao J. Preface to the special section on “International Conference on Electrochemical Energy Science and Technology (EEST2014), 31 October–4 November 2014, Shanghai, China”. International Journal of Hydrogen Energy, 2015, 40(41): 14271
https://doi.org/10.1016/j.ijhydene.2015.09.033
3 Chen C Y, Yang M H, Yeh K L, Chang J S. Biohydrogen production using sequential two-stage dark and photo fermentation processes. International Journal of Hydrogen Energy, 2008, 33(18): 4755–4762
https://doi.org/10.1016/j.ijhydene.2008.06.055
4 Gadhamshetty V, Sukumaran A, Nirmalakhandan N, Theinmyint M. Photofermentation of malate for biohydrogen production—a modeling approach. International Journal of Hydrogen Energy, 2008, 33(9): 2138–2146
https://doi.org/10.1016/j.ijhydene.2008.02.046
5 Lin C Y, Jo C H. Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2003, 78(6): 678–684
https://doi.org/10.1002/jctb.848
6 Sreethawong T, Chatsiriwatana S, Rangsunvigit P, Chavadej S. Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: Effects of operational parameters, COD: N ratio, and organic acid composition. International Journal of Hydrogen Energy, 2010, 35(9): 4092–4102
https://doi.org/10.1016/j.ijhydene.2010.02.030
7 Wang S, Zhang T, Su H. Enhanced hydrogen production from corn starch wastewater as nitrogen source by mixed cultures. Renewable Energy, 2016, 96: 1135–1141
https://doi.org/10.1016/j.renene.2015.11.072
8 Kapdan I K, Kargi F. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 2006, 38(5): 569–582
https://doi.org/10.1016/j.enzmictec.2005.09.015
9 Manish S, Banerjee R. Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 2008, 33(1): 279–286
https://doi.org/10.1016/j.ijhydene.2007.07.026
10 Meherkotay S, Das D. Biohydrogen as a renewable energy resource—prospects and potentials. International Journal of Hydrogen Energy, 2008, 33(1): 258–263
https://doi.org/10.1016/j.ijhydene.2007.07.031
11 Angenent L T, Wrenn B A. Optimizing mixed-culture bioprocessing to convert wastes into bionergy. Bioenergy, 2008, 179–194
12 Sydney E B, Larroche C, Novak A C, Nouaille R, Sarma S J, Brar S K, Letti L A J, Soccol V T, Soccol C R. Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresource Technology, 2014, 159(6): 380–386
https://doi.org/10.1016/j.biortech.2014.02.042
13 Wei Z, Zhang Y, Du B, Dong W, Qin W, Zhao Y. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresource Technology, 2013, 142(8): 240–245
14 Ghimire A, Sposito F, Frunzo L, Lens P N, Pirozzi F, Esposito G. Improved dark fermentative hydrogen yields from complex waste biomass using mixed anaerobic cultures. Proceedings of the Water Environment Federation, 2015, 2(2): 1
https://doi.org/10.2175/193864715819558316
15 Argun H, Kargi F. Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. International Journal of Hydrogen Energy, 2010, 35(12): 6170–6178
https://doi.org/10.1016/j.ijhydene.2010.03.132
16 Bao M, Su H, Tan T. Biohydrogen production by dark fermentation of starch using mixed bacterial cultures of bacillus sp. and brevumdimonas sp. Energy & Fuels, 2012, 26(9): 5872–5878
https://doi.org/10.1021/ef300666m
17 Hu B, Chen S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 2007, 32(15): 3266–3273
https://doi.org/10.1016/j.ijhydene.2007.03.005
18 Mu Y, Yu H Q, Wang G. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme and Microbial Technology, 2007, 40(4): 947–953
https://doi.org/10.1016/j.enzmictec.2006.07.033
19 Chaganti S R, Kim D H, Lalman J A, Shewa W A. Statistical optimization of factors affecting biohydrogen production from xylose fermentation using inhibited mixed anaerobic cultures. International Journal of Hydrogen Energy, 2012, 37(16): 11710–11718
https://doi.org/10.1016/j.ijhydene.2012.05.036
20 Masset J, Calusinska M, Hamilton C, Joris B, Wilmotte A, Thonart P. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnology for Biofuels, 2012, 5(1): 1
https://doi.org/10.1186/1754-6834-5-35
21 Chen W, Wu F, Zhang J. Potential production of non-food biofuels in China. Renewable Energy, 2016, 85: 939–944
https://doi.org/10.1016/j.renene.2015.07.024
22 Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T. Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and Combustion Science, 2015, 47: 60–88
https://doi.org/10.1016/j.pecs.2014.10.003
23 Luo X. Strategies for developing cassava industry in Guangxi. Zhongguo Nongxue Tongbao, 2004, 20(6): 376–379
24 Li Z, Huang Z, Yang Z, Chen D. The harmful factors and countermeasure influencing development of cassava fuel-alcohol industry. Renewable Energy Resources, 2008, 26(3): 106–110
25 Hu Z, Fang F, Ben D F, Pu G, Wang C. Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in (the) PRC. Applied Energy, 2004, 78(3): 247–256
https://doi.org/10.1016/j.apenergy.2003.09.003
26 Hu Z, Tan P, Pu G. Multi-objective optimization of cassava-based fuel ethanol used as an alternative automotive fuel in Guangxi, China. Applied Energy, 2006, 83(8): 819–840
https://doi.org/10.1016/j.apenergy.2005.09.002
27 Zhang T, Bao M D, Wang Y, Su H J, Tan T W. Genome sequence of Bacillus cereus strain A1, an efficient starch-utilizing producer of hydrogen. Genome Announcements, 2014, 2(3): e00494–e14
https://doi.org/10.1128/genomeA.00494-14
28 Zhang T, Bao M D, Wang Y, Su H J, Tan T W. Genome sequence of a promising hydrogen-producing facultative anaerobic bacterium, Brevundimonas naejangsanensis strain B1. Genome Announcements, 2014, 2(3): e00542–e14
29 Bao M D, Su H J, Tan T W. Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel, 2013, 112: 38–44
https://doi.org/10.1016/j.fuel.2013.04.063
30 Wang J, Wan W. Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 2009, 34(2): 799–811
https://doi.org/10.1016/j.ijhydene.2008.11.015
31 Ginkel S V, Sung S, Lay J J. Biohydrogen production as a function of pH and substrate concentration. Environmental Science & Technology, 2001, 35(24): 4726–4730
https://doi.org/10.1021/es001979r
32 de Amorim E L C, Sader L T, Silva E L. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. Applied Biochemistry and Biotechnology, 2012, 166(5): 1248–1263
https://doi.org/10.1007/s12010-011-9511-9
33 Chen W M, Tseng Z J, Lee K S, Chang J S. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 2005, 30(10): 1063–1070
https://doi.org/10.1016/j.ijhydene.2004.09.008
34 Ren N Q, Wang B Z, Ma F. A physiological ecology analysis of acidogenic fermentation of organic wastewater. China Biogas, 1995, 13(1): 1–6
35 Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y H. H2production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology Letters, 1998, 20(2): 143–147
https://doi.org/10.1023/A:1005372323248
36 Vatsala T M, Raj S M, Manimaran A. A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. International Journal of Hydrogen Energy, 2008, 33(20): 5404–5415
https://doi.org/10.1016/j.ijhydene.2008.07.015
37 Argun H, Kargi F. Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. International Journal of Hydrogen Energy, 2009, 34(20): 8543–8548
https://doi.org/10.1016/j.ijhydene.2009.08.049
38 Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 2008, 34(6): 755–781
https://doi.org/10.1016/j.pecs.2008.06.002
39 Hsiao C L, Chang J J, Wu J H, Chin W C, Wen F S, Huang C C, Chen C C, Lin C Y. Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles. International Journal of Hydrogen Energy, 2009, 34(17): 7173–7181
https://doi.org/10.1016/j.ijhydene.2009.06.028
40 Lee K S, Hsu Y F, Lo Y C, Lin P J, Lin C Y, Chang J S. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy, 2008, 33(5): 1565–1572
https://doi.org/10.1016/j.ijhydene.2007.10.019
[1] Xuantao Wu, Jie Wang. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(2): 415-426.
[2] Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar. Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics and scale-up approach[J]. Front. Chem. Sci. Eng., 2016, 10(4): 499-508.
[3] Jinbo OUYANG, Jingkang WANG, Yongli WANG, Qiuxiang YIN, Hongxun HAO. Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride[J]. Front. Chem. Sci. Eng., 2015, 9(1): 94-104.
[4] Farouq TWAIQ,M.S. NASSER,Sagheer A. ONAIZI. Effect of the degree of template removal from mesoporous silicate materials on their adsorption of heavy oil from aqueous solution[J]. Front. Chem. Sci. Eng., 2014, 8(4): 488-497.
[5] Weixin ZHANG, Wenran ZHAO, Zaoyuan ZHOU, Zeheng YANG. Facile synthesis of α-MnO2 micronests composed of nanowires and their enhanced adsorption to Congo red[J]. Front Chem Sci Eng, 2014, 8(1): 64-72.
[6] Tiantian LIU, Yuanyuan RAN, Bochao WANG, Weibing DONG, Songgu WU, Junbo GONG. The dehydration behavior and non-isothermal dehydration kinetics of donepezil hydrochloride monohydrate (Form I)[J]. Front Chem Sci Eng, 2014, 8(1): 55-63.
[7] Soumya Pandit, Balachandar G, Debabrata Das. Improved energy recovery from dark fermented cane molasses using microbial fuel cells[J]. Front Chem Sci Eng, 2014, 8(1): 43-54.
[8] Jasmin Shah, M. Rasul Jan, Attaul Haq, Younas Khan. Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies[J]. Front Chem Sci Eng, 2013, 7(4): 428-436.
[9] Xingfu SONG, Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer[J]. Front Chem Sci Eng, 2013, 7(2): 130-138.
[10] Xingfu SONG, Jingcai ZHAO, Yunzhao LI, Ze SUN, Jianguo YU. Thermal decomposition mechanism of ammonium sulfate catalyzed by ferric oxide[J]. Front Chem Sci Eng, 2013, 7(2): 210-217.
[11] T. A. Lasheen, M. E. El-Ahmady, H. B. Hassib, A. S. Helal. Oxidative leaching kinetics of molybdenum-uranium ore in H2SO4 using H2O2 as an oxidizing agent[J]. Front Chem Sci Eng, 2013, 7(1): 95-102.
[12] Hongman ZHANG, Qiang JIN, Rui XU, Lishi YAN, Zengxiang LIN. Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor[J]. Front Chem Sci Eng, 2011, 5(2): 252-257.
[13] Bingnan REN. Kinetics and thermodynamics of the phosphine adsorption on the modified activated carbon[J]. Front Chem Sci Eng, 2011, 5(2): 203-208.
[14] Zhen CHEN, Haitao ZHANG, Weiyong YING, Dingye FANG. Study on direct alcohol/ether fuel synthesis process in bubble column slurry reactor[J]. Front Chem Eng Chin, 2010, 4(4): 461-471.
[15] Tianlong DENG, Yafei GUO, Mengxia LIAO, Dongchan LI. Silver-catalyzed bioleaching for raw low-grade copper sulphide ores[J]. Front Chem Eng Chin, 2009, 3(3): 250-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed