Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (3) : 250-254    https://doi.org/10.1007/s11705-009-0049-0
RESEARCH ARTICLE
Silver-catalyzed bioleaching for raw low-grade copper sulphide ores
Tianlong DENG1,2(), Yafei GUO2, Mengxia LIAO1, Dongchan LI1
1. College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; 2. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
 Download: PDF(124 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This research was conducted to investigate the biooxidation and copper dissolution from raw low-grade refractory copper sulphide ores located in the Xinjiang Autonomous Region of China using adapted Thiobacillus ferrooxidans bacteria. In order to accelerate the bioleaching rate, the adapted mixed bacteria and silver ion catalyst were tested in the leach columns at laboratory scale. The overall acid consumption was 4.3 kg sulphuric acid per kg of dissolved copper and was linearly related to the percent copper dissolution. The calculated copper dissolution rates obey the Shrinking Core Model. The relative activation energy of the whole biooxidative leaching stages was calculated to be 48.58 kJ/mol.

Keywords green process      biohydrometallurgy      bioleaching      reaction kinetics      sulphide ores     
Corresponding Author(s): DENG Tianlong,Email:tldeng@isl.ac.cn   
Issue Date: 05 September 2009
 Cite this article:   
Tianlong DENG,Yafei GUO,Mengxia LIAO, et al. Silver-catalyzed bioleaching for raw low-grade copper sulphide ores[J]. Front Chem Eng Chin, 2009, 3(3): 250-254.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0049-0
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I3/250
Fig.1  Comparison of copper extraction
Fig.2  Effect of silver catalyst on copper extraction
Fig.3  Effect of temperature on bioleaching
Fig.4  Acid consumption vs copper extraction
Fig.5  A plot of = 1 - 2/3- (1 - ) time
Fig.6  A plot of 1 – (1 – ) time
Fig.7  Arrhenius plot for copper of bioleaching
1 Hearne T M, Haegele R, Beck R D. Zinc and Lead Processing. In: Dutrizac J E, Gonzalez J A, Bolton G L, Hancock P, eds. The metallurgical Society of CIM , 1998: 765-780
2 Poulin R, Lawrence R W. Economic and environmental nicks of biohydrometallurgy. Miner Eng , 1996, 9(8): 799-810
doi: 10.1016/0892-6875(96)00073-8
3 Deng T L, Liao M X, Wang M H, Chen Y W, Belzile N. Investigations of accelerating parameters for the biooxidation of low-grade refractory gold ores. Miner Eng , 2000, 13(14-15): 1543-1553
4 Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides: A review. Hydrometallurgy , 2006, 84(1-2): 81-108
5 Schrenk M O, Edwards K J, Goodman R M, Hamers R J, Banfield J F. Distribution of T. ferrooxidans and L. ferrooxidans: Implications for generation of acid mine drainage. Science , 1988, 279(6): 1519-1522
doi: 10.1126/science.279.5356.1519
6 Gehrke T, Telegdi J, Thierry D. Importance of intracellular polymeric substances from T. ferrooxidans for bioleaching. Appl Environ Microbiol , 1998, 64(7): 2743-2747
7 Mazuelos A, Carranza F, Palencia I, Romero R. High efficiency reactor for the biooxidation of ferrous iron. Hydrometallurgy , 2000, 58: 269-275
doi: 10.1016/S0304-386X(00)00141-9
8 Akcil A, Ciftci H, Deveci H. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Miner Eng , 2007, 20(3): 310-318
doi: 10.1016/j.mineng.2006.10.016
9 Liao M X, Deng T L. Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach. Miner Eng , 2004, 17(1): 17-22
doi: 10.1016/j.mineng.2003.09.007
10 Ubaldini S, Veglio F, Toro L, Abbruzzese C. Biooxidation of arsenopyrite to improve gold cyanidation: Study of some parameters and comparison with grinding. Int J Miner Process , 1997, 52: 65-80
doi: 10.1016/S0301-7516(97)00041-0
11 Ballester A, González F, Blázquez M L, Cómez C, Mier J L. The use of catalytic ions in bioleaching. Hydrometallurgy , 1992, 29: 145-160
doi: 10.1016/0304-386X(92)90010-W
12 Sato H, Nakazawa H, Kudo Y. Effect of silver chloride on the bioleaching of chal-copyrite concentrate. Int J Miner Process , 2000, 59: 17-24
doi: 10.1016/S0301-7516(99)00061-7
13 Mu?oz J A, Dreisinger D B, Cooper W C, Young S K. Silver-catalyzed bioleaching of low-grade copper ores. Part I: Shake flasks tests. Hydrometallurgy , 2007, 88(1-4): 3-18
14 Mu?oz J A, Dreisinger D B, Cooper W C, Young S K. Silver-catalyzed bioleaching of low-grade copper ores. Part II: Stirred tank tests. Hydrometallurgy , 2007, 88(1-4): 19-34
15 Mier J L, Ballester A, Blázquez M L, González F, Mu?oz J A. Influence of metallic ions in the bioleaching of chalcopyrite by Sulfolobus BC: Experiments using pneumatically stirred reactors and massive samples. Miner Eng , 1995, 8(9): 949-965
doi: 10.1016/0892-6875(95)00059-Y
16 Chaudhury G R, Das R P. Bacterial leaching-complex sulphides of copper, lead and zinc. Int J Miner Process , 1987, 21: 57-64
doi: 10.1016/0301-7516(87)90005-6
17 Fowler T A, Crundwell F K. Leaching of zinc sulphide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulphide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol , 1999, 65(12): 5285-5292
18 Habashi F. Principle of Extractive Metallurgy, Vol 1. New York: Gordon & Breach, 1979, 130-164
[1] Parimal Pal, Ramesh Kumar, Subhamay Banerjee. Purification and concentration of gluconic acid from an integrated fermentation and membrane process using response surface optimized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(1): 152-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed