Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2014, Vol. 8 Issue (1) : 43-54    https://doi.org/10.1007/s11705-014-1403-4
RESEARCH ARTICLE
Improved energy recovery from dark fermented cane molasses using microbial fuel cells
Soumya Pandit, Balachandar G, Debabrata Das()
Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
 Download: PDF(394 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A major limitation associated with fermentative hydrogen production is the low substrate conversion efficiency. This limitation can be overcome by integrating the process with a microbial fuel cell (MFC) which converts the residual energy of the substrate to electricity. Studies were carried out to check the feasibility of this integration. Biohydrogen was produced from the fermentation of cane molasses in both batch and continuous modes. A maximum yield of about 8.23 mol H2/kg CODremoved was observed in the batch process compared to 11.6 mol H2/kg CODremoved in the continuous process. The spent fermentation media was then used as a substrate in an MFC for electricity generation. The MFC parameters such as the initial anolyte pH, the substrate concentration and the effect of pre-treatment were studied and optimized to maximize coulombic efficiency. Reductions in COD and total carbohydrates were about 85% and 88% respectively. A power output of 3.02 W/m3 was obtained with an anolyte pH of 7.5 using alkali pre-treated spent media. The results show that integrating a MFC with dark fermentation is a promising way to utilize the substrate energy.

Keywords dark fermentation      biohydrogen      microbial fuel cell      volatile fatty acid      anolyte     
Corresponding Author(s): Das Debabrata,Email:ddas.iitkgp@gmail.com   
Issue Date: 05 March 2014
 Cite this article:   
Soumya Pandit,Balachandar G,Debabrata Das. Improved energy recovery from dark fermented cane molasses using microbial fuel cells[J]. Front Chem Sci Eng, 2014, 8(1): 43-54.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1403-4
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I1/43
Fig.1  Photographs of the experimental set-up used in the two-stage process: dark fermentation and single chambered MFC
Fig.2  Simulation of the cumulative hydrogen production using the modified Gompertz equation at optimal media composition
Fig.3  Effect of dilution rate on: (a) the rate of hydrogen production and (b) COD removal efficiency
Fig.4  Hydrogen yield for: (a) raw cane molasses in the batch process, (b) cane molasses with supplements (yeast and malt extracts) in the batch process and (c) cane molasses with supplements in the continuous process.
MFCMFC-1, pH 5.5MFC-2, pH 6.5MFC-3, pH 7.5MFC-4, pH 8.5
Max. open circuit potential /mV627±5804±11858±9822±7
Max. volumetric power density /(W?m–3)1.21±0.051.84±0.072.49±0.092.03±0.08
COD removal efficiency /%43.73±2.470.4±3.580.2±1.178.1±0.9
Carbohydrate removal /(%, w/w)56±1.560.4±1.167±0.862.6±1.5
Internal resistance /?128.4±2.598.7±2.875.2±1.889.3±1.6
Tab.1  The effect of initial anolyte pH on single chambered MFCs with 6 g/L alkali treated anolyte
Fig.5  (a) Polarization curves for anodic half-cell voltages versus current density at different external loads and power densities with initial anolyte pH values of 7.5, 8.5 and 6.5. (b) Percent relative decrease in the anode potential (RDAP) observed during MFC operation with respect to applied external resistance and depicting sustainable power
Fig.6  Coulombic efficiency (CE), volumetric power density (P) and anolyte conductivity at different concentrations of alkali pre-treated spent media
Fig.7  Polarization of MFCs using different buffer supplemented anolytes
Integrated systemReactor typeReactor volume /LFeedstockH2 yieldCOD removal efficiencyPower densityEnergy recoveryReferences
Dark fermentationTubular reactor2.0Glucose based synthetic wastewater2.85 mol H2/mol glucose97%559 J?L-1[15]
MFCSingle chamber0.1
Dark fermentationSequencing batch biofilm reactor1.4Vegetable wastewater2.46 mmol H2?h-1[16]
MFCSingle chamber0.55111.76 mW?m-2
Dark fermentationDouble jacketed tubular reactor0.5Molasses8.23 mol H2 kg-1 ?CODremoved ?d-185%19.8%Present study
MFCSingle chamber1.03.02 W?m-32.2%
Tab.2  Comparative study on dark fermentation integrated with MFC
1 Elam C C, Padró C E G, Sandrock G, Luzzi A, Lindblad P, Hagen E F. Realizing the hydrogen future: the International Energy Agency’s efforts to advance hydrogen energy technologies. International Journal of Hydrogen Energy , 2003, 28(6): 601–607
doi: 10.1016/S0360-3199(02)00147-7
2 Nayak B K, Pandit S, Das D. Biohydrogen. In: Kennes C, Veiga ría C, editors. Air Pollution Prevention and Control. John Wiley & Sons Ltd , 2013, 345–381
3 Oh Y K, Raj S M, Jung G Y, Park S. Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresource Technology , 2011, 102(18): 8357–8367
doi: 10.1016/j.biortech.2011.04.054
4 Das D, Veziro?lu T N. Hydrogen production by biological processes: A survey of literature. International Journal of Hydrogen Energy , 2001, 26(1): 13–28
doi: 10.1016/S0360-3199(00)00058-6
5 Levin D B, Pitt L, Love M. Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy , 2004, 29(2): 173–185
doi: 10.1016/S0360-3199(03)00094-6
6 Jung G Y, Jung H O, Kim J R, Ahn Y, Park S. Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnology Letters , 1999, 21(6): 525–529
doi: 10.1023/A:1005560630351
7 Benemann J. Hydrogen biotechnology: progress and prospects. Nature Biotechnology , 1996, 14(9): 1101–1103
doi: 10.1038/nbt0996-1101
8 Mohan S V, Srikanth S, Velvizhi G, Babu M L. Microbial Fuel Cells for Sustainable Bioenergy Generation: Principles and Perspective Applications. In: Gupta V K, Tuohy M G, eds. Biofuel Technologies . Berlin: Springer Berlin Heidelberg, 2013, 335–368
9 Momirlan M, Veziroglu T. Current status of hydrogen energy. Renewable & Sustainable Energy Reviews , 2002, 6(1–2): 141–179
doi: 10.1016/S1364-0321(02)00004-7
10 Lovley D R. The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology , 2008, 19(6): 564–571
doi: 10.1016/j.copbio.2008.10.005
11 Logan B E, Regan J M. Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology , 2006, 14(12): 512–518
doi: 10.1016/j.tim.2006.10.003
12 Torres C I, Marcus A K, Lee H S, Parameswaran P, Krajmalnik-Brown R, Rittmann B E. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews , 2010, 34(1): 3–17
doi: 10.1111/j.1574-6976.2009.00191.x
13 Oh S T, Kim J R, Premier G C, Lee T H, Kim C, Sloan W T. Sustainable wastewater treatment: How might microbial fuel cells contribute. Biotechnology Advances , 2010, 28(6): 871–881
doi: 10.1016/j.biotechadv.2010.07.008
14 Guwy A J, Dinsdale R M, Kim J R, Massanet-Nicolau J, Premier G. Fermentative biohydrogen production systems integration. Bioresource Technology , 2011, 102(18): 8534–8542
doi: 10.1016/j.biortech.2011.04.051
15 Sharma Y, Li B. Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC). International Journal of Hydrogen Energy , 2010, 35(8): 3789–3797
doi: 10.1016/j.ijhydene.2010.01.042
16 Mohanakrishna G, Venkata Mohan S, Sarma P N. Utilizing acid-rich effluents of the fermentative hydrogen production process as a substrate for harnessing bioelectricity: An integrative approach. International Journal of Hydrogen Energy , 2010, 35(8): 3440–3449
doi: 10.1016/j.ijhydene.2010.01.084
17 Wang A, Sun D, Cao G, Wang H, Ren N, Wu W M, Logan B E. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource Technology , 2011, 102(5): 4137–4143
doi: 10.1016/j.biortech.2010.10.137
18 Park M J, Jo J H, Park D, Lee D S, Park J M. Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. International Journal of Hydrogen Energy , 2010, 35(12): 6194–6202
doi: 10.1016/j.ijhydene.2010.03.135
19 Vatsala T M. Hydrogen production from (cane-molasses) stillage by Citrobacter freundii and its use in improving methanogenesis. International Journal of Hydrogen Energy , 1992, 17(12): 923–927
doi: 10.1016/0360-3199(92)90052-X
20 González T, Terrón M C, Yagüe S, Zapico E, Galletti G C, González A E. Pyrolysis/gas chromatography/mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp. I-62 (CECT 20197). Rapid Communications in Mass Spectrometry , 2000, 14(15): 1417–1424
doi: 10.1002/1097-0231(20000815)14:15<1417::AID-RCM41>3.0.CO;2-I
21 Singhania R R, Patel A K, Christophe G, Fontanille P, Larroche C. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresource Technology , 2013, 145: 166–174
doi: 10.1016/j.biortech.2012.12.137
22 Poggi-Varaldo H M, Carmona-Martínez A, Vázquez-Larios A L, Solorza-Feria O.Effect of inoculum type on the performance of a microbial fuel cell fed with spent organic extracts from hydrogenogenic fermentation of organic solid wastes. Journal of New Materials for Electrochemical Systems , 2009, 12: 049–054
23 Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry , 2000, 35(6): 589–593
doi: 10.1016/S0032-9592(99)00109-0
24 Kumar N, Das D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme and Microbial Technology , 2001, 29(4–5): 280–287
doi: 10.1016/S0141-0229(01)00394-5
25 Khilari S, Pandit S, Ghangrekar M M, Das D, Pradhan D. Graphene supported α-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. RSC Advances , 2013, 3(21): 7902–7911
doi: 10.1039/c3ra22569k
26 Behera M, Ghangrekar M M. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology , 2009, 100(21): 5114–5121
doi: 10.1016/j.biortech.2009.05.020
27 Lay J J, Li Y Y, Noike T. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Research , 1997, 31(6): 1518–1524
doi: 10.1016/S0043-1354(96)00413-7
28 Standard Methods for the Examination of Water and Wastewater. 20th Ed. American Public Health Association (APHA), American Water Works Association, Water Pollution Control Federation, Washington DC . 1998, 141
29 Logan B E, Hamelers B, Rozendal R, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: Methodology and technology. Environmental Science & Technology , 2006, 40(17): 5181–5192
doi: 10.1021/es0605016
30 Logan B E. Microbial Fuel Cells. 1st ed. Wiley-Interscience , 2008, 216
31 Loewus F A. Improvement in anthrone method for determination of carbohydrates. Analytical Chemistry , 1952, 24(1): 219–219
doi: 10.1021/ac60061a050
33 Seol E, Kim S, Raj S M, Park S. Comparison of hydrogen-production capability of four different Enterobacteriaceae strains under growing and non-growing conditions. International Journal of Hydrogen Energy , 2008, 33(19): 5169–5175
doi: 10.1016/j.ijhydene.2008.05.007
34 Bringi V, Dale B E. Enhanced yeast immobilization by nutrient starvation. Biotechnology Letters , 1985, 7(12): 905–908
doi: 10.1007/BF01088014
35 Gavala H N, Skiadas I V, Ahring B K. Biological hydrogen production in suspended and attached growth anaerobic reactor systems. International Journal of Hydrogen Energy , 2006, 31(9): 1164–11
doi: 10.1016/j.ijhydene.2005.09.009
36 Gil G C, Chang I S, Kim B H, Kim M, Jang J K, Park H S, Kim H J. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors & Bioelectronics , 2003, 18(4): 327–334
doi: 10.1016/S0956-5663(02)00110-0
37 He Z, Huang Y, Manohar A K, Mansfeld F. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry (Amsterdam, Netherlands) , 2008, 74(1): 78–82
doi: 10.1016/j.bioelechem.2008.07.007
38 Ren Z, Ward T E, Regan J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environmental Science & Technology , 2007, 41(13): 4781–4786
doi: 10.1021/es070577h
39 Venkata Mohan S, Veer Raghavulu S, Sarma P N. Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane. Biosensors & Bioelectronics , 2008, 23(9): 1326–1332
doi: 10.1016/j.bios.2007.11.016
40 Menicucci J, Beyenal H, Marsili E, Veluchamy, Demir G, Lewandowski Z. Veluchamy, Demir G, Lewandowski Z. Procedure for determining maximum sustainable power generated by microbial fuel cells. Environmental Science & Technology , 2006, 40(3): 1062–1068
doi: 10.1021/es051180l
41 Yuan Y, Zhao B, Zhou S, Zhong S, Zhuang L. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresource Technology , 2011, 102(13): 6887–6891
doi: 10.1016/j.biortech.2011.04.008
42 Kim B H, Chang I S, Gadd G M. Challenges in microbial fuel cell development and operation. Applied Microbiology and Biotechnology , 2007, 76(3): 485–494
doi: 10.1007/s00253-007-1027-4
43 Kim B H, Chang I S, Gil G C, Park H S, Kim H J. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters , 2003, 25(7): 541–545
doi: 10.1023/A:1022891231369
44 Di Lorenzo M, Curtis T P, Head I M, Scott K. A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Research , 2009, 43(13): 3145–3154
doi: 10.1016/j.watres.2009.01.005
45 Lefebvre O, Tan Z, Kharkwal S, Ng H Y. Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresource Technology , 2012, 112: 336–340
doi: 10.1016/j.biortech.2012.02.048
[1] Shaojie Wang,Zhihong Ma,Ting Zhang,Meidan Bao,Haijia Su. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch[J]. Front. Chem. Sci. Eng., 2017, 11(1): 100-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed