Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (4) : 470-483    https://doi.org/10.1007/s11705-012-1217-1
REVIEW ARTICLE
Progress of three-dimensional macroporous bioactive glass for bone regeneration
Lijun JI1(), Yunfeng SI1, Ailing LI2, Wenjun WANG1, Dong QIU2(), Aiping ZHU1
1. College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; 2. Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(579 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bioactive glasses (BGs) are ideal materials for macroporous scaffolds due to their excellent osteoconductive, osteoinductive, biocompatible and biodegradable properties, and their high bone bonding rates. Macroporous scaffolds made from BGs are in high demand for bone regeneration because they can stimulate vascularized bone ingrowth and they enhance bonding between scaffolds and surrounding tissues. Engineering BG/biopolymers (BP) composites or hybrids may be a good way to prepare macroporous scaffolds with excellent properties. This paper summarizes the progress in the past few years in preparing three-dimensional macroporous BG and BG/BP scaffolds for bone regeneration. Since the brittleness of BGs is a major problem in developing macroporous scaffolds and this limits their use in load bearing applications, the mechanical properties of macroporous scaffolds are particularly emphasized in this review.

Keywords bioactive glass      biopolymer      bone regeneration      macroporous scaffolds      tissue engineering     
Corresponding Author(s): JI Lijun,Email:ljji@yzu.edu.cn; QIU Dong,Email:dqiu@iccas.ac.cn   
Issue Date: 05 December 2012
 Cite this article:   
Lijun JI,Yunfeng SI,Wenjun WANG, et al. Progress of three-dimensional macroporous bioactive glass for bone regeneration[J]. Front Chem Sci Eng, 2012, 6(4): 470-483.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1217-1
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I4/470
Fig.1  Scanning electron microscopy (SEM) images of two typical BGs synthesized by a melt-derived method and a sol-gel process respectively: a) melt-derived BG 45S5; b) sol-gel derived BG 70S30C
Fig.1  Scanning electron microscopy (SEM) images of two typical BGs synthesized by a melt-derived method and a sol-gel process respectively: a) melt-derived BG 45S5; b) sol-gel derived BG 70S30C
Fig.1  Scanning electron microscopy (SEM) images of two typical BGs synthesized by a melt-derived method and a sol-gel process respectively: a) melt-derived BG 45S5; b) sol-gel derived BG 70S30C
Fig.1  Scanning electron microscopy (SEM) images of two typical BGs synthesized by a melt-derived method and a sol-gel process respectively: a) melt-derived BG 45S5; b) sol-gel derived BG 70S30C
Fig.1  Scanning electron microscopy (SEM) images of two typical BGs synthesized by a melt-derived method and a sol-gel process respectively: a) melt-derived BG 45S5; b) sol-gel derived BG 70S30C
Fig.1  Scanning electron microscopy (SEM) images of two typical BGs synthesized by a melt-derived method and a sol-gel process respectively: a) melt-derived BG 45S5; b) sol-gel derived BG 70S30C
Fig.2  (a) Picture of gel dried at 120°C (b) Si magic angle spinning (MAS) NMR spectra of gel dried at 120°C (lower) and 450°C (upper) []
Fig.2  (a) Picture of gel dried at 120°C (b) Si magic angle spinning (MAS) NMR spectra of gel dried at 120°C (lower) and 450°C (upper) []
Fig.2  (a) Picture of gel dried at 120°C (b) Si magic angle spinning (MAS) NMR spectra of gel dried at 120°C (lower) and 450°C (upper) []
Fig.2  (a) Picture of gel dried at 120°C (b) Si magic angle spinning (MAS) NMR spectra of gel dried at 120°C (lower) and 450°C (upper) []
Fig.2  (a) Picture of gel dried at 120°C (b) Si magic angle spinning (MAS) NMR spectra of gel dried at 120°C (lower) and 450°C (upper) []
Fig.2  (a) Picture of gel dried at 120°C (b) Si magic angle spinning (MAS) NMR spectra of gel dried at 120°C (lower) and 450°C (upper) []
Fig.3  Composition dependence of bioactive CaO-SiO-PO gel-glasses. Triangle HA formation, filled black circle no HA formation, star dissolution []
Fig.3  Composition dependence of bioactive CaO-SiO-PO gel-glasses. Triangle HA formation, filled black circle no HA formation, star dissolution []
Fig.3  Composition dependence of bioactive CaO-SiO-PO gel-glasses. Triangle HA formation, filled black circle no HA formation, star dissolution []
Fig.3  Composition dependence of bioactive CaO-SiO-PO gel-glasses. Triangle HA formation, filled black circle no HA formation, star dissolution []
Fig.3  Composition dependence of bioactive CaO-SiO-PO gel-glasses. Triangle HA formation, filled black circle no HA formation, star dissolution []
Fig.3  Composition dependence of bioactive CaO-SiO-PO gel-glasses. Triangle HA formation, filled black circle no HA formation, star dissolution []
Fig.4  -X-ray fluoroscopy (XRF) element mapping of a 210 × 210 μm zone of the BG after heat treatment at 120°C []
Fig.4  -X-ray fluoroscopy (XRF) element mapping of a 210 × 210 μm zone of the BG after heat treatment at 120°C []
Fig.4  -X-ray fluoroscopy (XRF) element mapping of a 210 × 210 μm zone of the BG after heat treatment at 120°C []
Fig.4  -X-ray fluoroscopy (XRF) element mapping of a 210 × 210 μm zone of the BG after heat treatment at 120°C []
Fig.4  -X-ray fluoroscopy (XRF) element mapping of a 210 × 210 μm zone of the BG after heat treatment at 120°C []
Fig.4  -X-ray fluoroscopy (XRF) element mapping of a 210 × 210 μm zone of the BG after heat treatment at 120°C []
CompositionPreparation methodImproved property or added functionRef.
MgO, K2O, Na2O, CaO, B2O3, P2O5, SiO2MeltingLarge working range[29]
AgO, MgO, K2O, Na2O, CaO, SiO2, P2O5, CaF2MeltingAntibacterial[38]
SiO2, CaO, ZnOSol-gelEnhanced specific surface area[39]
SiO2, CaO, P2O5, ZnOSol-gelEnhanced specific surface area[40]
MgO, CaO, SiO2, P2O5, CaF2MeltingMechanical properties[42,43]
Tab.1  Species of bioactive glasses for the preparation of scaffolds
BiopolymerMethod of treatmentTensile strength /MPaElastic modulus /MPaRef.
Chitosan film-1.4-892.7-4.1 × 103[50,52,54-57]
Chitosan filmPlasticization10-7460-364[50,52]
Chitosan/PVA/PCL/PLA filmsBlending0.5-732-470[52,54,55,57]
Chitosan/EHMPTMA/EHAIPN compounding29-[58]
Tab.2  Mechanical properties of chitosan materials
BiopolymerMethod of treatmentTensile strength/MPaElastic modulus /MPaRef.
Collagen matrices and films-20-92.51.16 × 103-2.0 × 103[59,60,62,65,68]
Collagen gel-0.130.4-0.6[66,67]
Collagen matrices and filmsCrosslinking10.1-77.91.12 × 103-2.5 × 103[62,65,68]
Collagen gelCrosslinking-2.1-8.0[66,67]
Tab.3  Mechanical properties of collagen materials
BiopolymerMethod of treatmentTensile strength/MPaElastic modulus/MPaRef.
Gelatin film-1.7-154.6 × 10-2-3.5 × 103[71,73-75,78]
Gelatin/ PHEMACompounding-8.0 × 10-2[74]
Gellan/gelatinCompounding10-60-[79]
Gelatin filmCrosslinking80-963.3 × 103-3.7 × 103[72]
Gelatin filmUniaxial stretching-0.5 × 102-2.5 × 102[76]
Gelatin filmPlasticization20.4-1302.5 × 102-2.1 × 103[82-84]
Tab.4  Mechanical properties of gelatin materials
Bioactive glassPreparation methodPore size/μmCompressive strength/MPaElastic modulus/MPaRef.
SiO2, P2O5, CaO, MgO, Na2O, K2OPU sponge template100-5001[30]
SiO2, P2O5, CaO, MgO, Na2O, K2O, CaF, Ag>1002[38]
SiO2, P2O5, CaO, Na2O510-7200.3-0.4[90]
Na2O, K2O, MgO, CaO, SiO2, P2O5, B2O3200-50010[91]
SiO2, P2O5, CaO, MgO, Na2O, K2OPhase separation6-12016-1804 × 103-25 × 103[31]
SiO2, CaOFoam synthesis500; 1002.26[87]
SiO2, CaO, Na2O, K2O, P2O5, MgO, CaF2Polymer particle template>10020[94]
SiO2, P2O5, CaO, MgO, Na2O, K2OFreeze extrusion3001405 × 103-6 × 103[106]
Tab.5  Preparation methods, pore size and mechanical properties of typical macroporous BG scaffolds
Bioactive glassBiopolymerPreparation methodPore size/μmCompressive strength/MPaElastic modulus/MPaRef.
MgO, CaO, SiO2, P2O5, CaF2(AW GC)ChitosanPU sponge template100-5003.11[93]
SiO2, CaO, P2O5PHBSalt particle250-300[99]
SiO2, NaO, P2O5, CaO (45S5)PUSalt particle100-400[100]
SiO2, CaO, P2O5GelatinPhase separation200-50050-80[101]
SiO2, CaO, P2O5PLLA*10-4000.358[102]
SiO2, CaO, P2O5, MgOPLLA113, 1490.75, 0.6511,7[103]
SiO2, NaO, P2O5, CaO (45S5)PCL100-3000.20.251[104]
Tab.6  Preparation methods, pore size and mechanical properties of typical macroporous BG/BP scaffolds
Fig.5  Graphical representation of SAXS data for a foam immersed in SBF as a function of time []
Fig.5  Graphical representation of SAXS data for a foam immersed in SBF as a function of time []
Fig.5  Graphical representation of SAXS data for a foam immersed in SBF as a function of time []
Fig.5  Graphical representation of SAXS data for a foam immersed in SBF as a function of time []
Fig.5  Graphical representation of SAXS data for a foam immersed in SBF as a function of time []
Fig.5  Graphical representation of SAXS data for a foam immersed in SBF as a function of time []
Fig.6  Types of BG/BP blend and hybrid structures: (a) BP is dominant and forms a continuous phase in the blend; (b) BG is dominant and forms a continuous phase in the blend; (c) BG and BP both form continuous phases; (d) BG/BP hybrid without phase separation
Fig.6  Types of BG/BP blend and hybrid structures: (a) BP is dominant and forms a continuous phase in the blend; (b) BG is dominant and forms a continuous phase in the blend; (c) BG and BP both form continuous phases; (d) BG/BP hybrid without phase separation
Fig.6  Types of BG/BP blend and hybrid structures: (a) BP is dominant and forms a continuous phase in the blend; (b) BG is dominant and forms a continuous phase in the blend; (c) BG and BP both form continuous phases; (d) BG/BP hybrid without phase separation
Fig.6  Types of BG/BP blend and hybrid structures: (a) BP is dominant and forms a continuous phase in the blend; (b) BG is dominant and forms a continuous phase in the blend; (c) BG and BP both form continuous phases; (d) BG/BP hybrid without phase separation
Fig.6  Types of BG/BP blend and hybrid structures: (a) BP is dominant and forms a continuous phase in the blend; (b) BG is dominant and forms a continuous phase in the blend; (c) BG and BP both form continuous phases; (d) BG/BP hybrid without phase separation
Fig.6  Types of BG/BP blend and hybrid structures: (a) BP is dominant and forms a continuous phase in the blend; (b) BG is dominant and forms a continuous phase in the blend; (c) BG and BP both form continuous phases; (d) BG/BP hybrid without phase separation
1 Hench L L, Thompson I. Twenty-first century challenges for biomaterials. Journal of the Royal Society, Interface , 2010, 7(Suppl_4): S379–S391
doi: 10.1098/rsif.2010.0151.focus
2 Arcos D, Vallet-Regi M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia , 2010, 6(8): 2874–2888
doi: 10.1016/j.actbio.2010.02.012
3 Boccaccini A R, Keim S, Ma R, Li Y, Zhitomirsky I. Electrophoretic deposition of biomaterials. Journal of the Royal Society, Interface , 2010, 7(Suppl_5): S581–S613
doi: 10.1098/rsif.2010.0156.focus
4 Gorustovich A A, Roether J A, Boccaccini A R. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Engineering Part B: Reviews, 2010, 16(2): 199–207
doi: 10.1089/ten.teb.2009.0416
5 Hertz A, Bruce I J. Inorganic materials for bone repair or replacement applications. Nanomedicine; Nanotechnology, Biology, and Medicine , 2007, 2: 899–918
6 Hench L L, Xynos I D, Polak J M. Bioactive glasses for in situ tissue regeneration. Journal of Biomaterials Science. Polymer Edition , 2004, 15(4): 543–562
doi: 10.1163/156856204323005352
7 Hench L L, Splinter R J, Allen W C, Greenlee T K. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research , 1971, 5(6): 117–141
doi: 10.1002/jbm.820050611
8 Hulbert S F, Young F A, Mathews R S, Klawitter J J, Talbert C D, Stelling F H. Potential of ceramic materials as permanently skeletal prostheses. Journal of Biomedical Materials Research , 1970, 4(3): 433–456
doi: 10.1002/jbm.820040309
9 Gauthier O, Bouler J M, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials , 1998, 19(1-3): 133–139
doi: 10.1016/S0142-9612(97)00180-4
10 Hutmacher D W. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science. Polymer Edition , 2001, 12(1): 107–124
doi: 10.1163/156856201744489
11 Guarino V, Causa F, Ambrosio L. Bioactive scaffolds for bone and ligament tissue. Expert Review of Medical Devices , 2007, 4(3): 405–418
doi: 10.1586/17434440.4.3.405
12 Moroni L, De Wijn J R, Van Blitterswijk C A. Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science. Polymer Edition , 2008, 19(5): 543–572
doi: 10.1163/156856208784089571
13 Mourino V, Boccaccini A R. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society, Interface , 2010, 7(43): 209–227
doi: 10.1098/rsif.2009.0379
14 Baroli B. From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. Journal of Pharmaceutical Sciences , 2009, 98(4): 1317–1375
doi: 10.1002/jps.21528
15 Habraken W, Wolke J G C, Jansen J A. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews , 2007, 59(4-5): 234–248
doi: 10.1016/j.addr.2007.03.011
16 Lee S H, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews , 2007, 59(4-5): 339–359
doi: 10.1016/j.addr.2007.03.016
17 Chung H J, Park T G. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Advanced Drug Delivery Reviews , 2007, 59(4-5): 249–262
doi: 10.1016/j.addr.2007.03.015
18 Ginebra M P, Traykova T, Planell J A. Calcium phosphate cements as bone drug delivery systems: a review. Journal of Controlled Release , 2006, 113(2): 102–110
doi: 10.1016/j.jconrel.2006.04.007
19 Seeherman H, Wozney J M. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine & Growth Factor Reviews , 2005, 16(3): 329–345
doi: 10.1016/j.cytogfr.2005.05.001
20 Saltzman W M, Olbricht W L. Building drug delivery into tissue engineering. Nature Reviews. Drug Discovery , 2002, 1(3): 177–186
doi: 10.1038/nrd744
21 Stevens M M, George J H. Exploring and engineering the cell surface interface. Science , 2005, 310(5751): 1135–1138
doi: 10.1126/science.1106587
22 Rezwan K, Chen Q Z, Blaker J J, Boccaccini A R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials , 2006, 27(18): 3413–3431
doi: 10.1016/j.biomaterials.2006.01.039
23 Li R, Clark A E, Hench L L. An investigation of bioactive glass powders by sol-gel processing. Journal of Applied Biomaterials , 1991, 2(4): 231–239
doi: 10.1002/jab.770020403
24 Jones J R, Lin S, Yue S, Lee P D, Hanna J V, Smith M E, Newport R J. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Journal of Engineering in Medicine, 2010, 224(12): 1373–1387
doi: 10.1243/09544119JEIM836
25 Qiu D, Martin R A, Knowles J C, Smith M E, Newport R J. A comparative study of the structure of sodium borophosphates made by sol-gel and melt-quench methods. Journal of Non-Crystalline Solids , 2010, 356(9-10): 490–494
doi: 10.1016/j.jnoncrysol.2009.12.016
26 Li A, Wang D, Xiang J, Newport R J, Reinholdt M X, Mutin P H, Vantelon D, Bonhomme C, Smith M E, Laurencin D, Qiu D. Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology. Journal of Non-Crystalline Solids , 2011, 357(19-20): 3548–3555
doi: 10.1016/j.jnoncrysol.2011.07.003
27 Qiu D, Guerry P, Knowles J C, Smith M E, Newport R J. Formation of functional phosphosilicate gels from phytic acid and tetraethyl orthosilicate. Journal of Sol-Gel Science and Technology , 2008, 48(3): 378–383
doi: 10.1007/s10971-008-1818-9
28 Li A, Qiu D. Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses. Journal of Materials Science. Materials in Medicine , 2011, 22(12): 2685–2691
doi: 10.1007/s10856-011-4464-7
29 Brink M. The influence of alkali and alkaline earths on the working range for bioactive glasses. Journal of Biomedical Materials Research , 1997, 36(1): 109–117
doi: 10.1002/(SICI)1097-4636(199707)36:1<109::AID-JBM13>3.0.CO;2-D
30 Vitale-Brovarone C, Verne E, Robiglio L, Appendino P, Bassi F, Martinasso G, Muzio G, Canuto R. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomaterialia , 2007, 3(2): 199–208
doi: 10.1016/j.actbio.2006.07.012
31 Liu X, Rahaman M N, Fu Q A. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response. Acta Biomaterialia , 2011, 7(1): 406–416
doi: 10.1016/j.actbio.2010.08.025
32 Vitale-Brovarone C, Di Nunzio S, Bretcanu O, Verne E. Macroporous glass-ceramic materials with bioactive properties. Journal of Materials Science. Materials in Medicine , 2004, 15(3): 209–217
doi: 10.1023/B:JMSM.0000015480.49061.e1
33 Saboori A, Sheikhi M, Moztarzadeh F, Rabiee M, Hesaraki S, Tahriri M, Nezafati N. Sol-gel preparation, characterisation and in vitro bioactivity of Mg containing bioactive glass. Advances in Applied Ceramics , 2009, 108(3): 155–161
doi: 10.1179/174367608X324054
34 Perez-Pariente J, Balas F, Roman J, Salinas A J, Vallet-Regi M. Influence of composition and surface characteristics on the in vitro bioactivity of SiO2-CaO-P2O5-MgO sol-gel glasses. Journal of Biomedical Materials Research , 1999, 47: 170–175
doi: 10.1002/(SICI)1097-4636(199911)47:2<170::AID-JBM6>3.0.CO;2-J
35 Salinas A J, Roman J, Vallet-Regi M, Oliveira J M, Correia R N, Fernandes M H. In vitro bioactivity of glass and glass-ceramics of the 3CaO center dot P2O5-CaO center dot SiO2-CaO center dot MgO center dot 2SiO(2) system. Biomaterials , 2000, 21: 251–257
doi: 10.1016/S0142-9612(99)00150-7
36 Saboori A, Rabiee M, Mutarzadeh F, Sheikhi M, Tahriri M, Karimi M. Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass. Mater Sci Eng C Biomim Supramol Syst , 2009, 29(1): 335–340
doi: 10.1016/j.msec.2008.07.004
37 Jones J R, Ehrenfried L M, Saravanapavan P, Hench L L. Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. Journal of Materials Science. Materials in Medicine , 2006, 17(11): 989–996
doi: 10.1007/s10856-006-0434-x
38 Vitale-Brovarone C, Miola M, Alagna C B, Verne E. 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chemical Engineering Journal , 2008, 137(1): 129–136
doi: 10.1016/j.cej.2007.07.083
39 Courtheoux L, Lao J, Nedelec J M, Jallot E. Controlled bioactivity in zinc-doped sol-gel-derived binary bioactive glasses. Journal of Physical Chemistry C , 2008, 112(35): 13663–13667
doi: 10.1021/jp8044498
40 Bini M, Grandi S, Capsoni D, Mustarelli P, Saino E, Visai L. SiO2-P2O5-CaO glasses and glass-ceramics with and without ZnO: relationships among composition, microstructure, and bioactivity. Journal of Physical Chemistry C , 2009, 113(20): 8821–8828
doi: 10.1021/jp810977w
41 Lao J, Jallot E, Nedelec J M. Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications? Chemistry of Materials , 2008, 20(15): 4969–4973
doi: 10.1021/cm800993s
42 Nakamura T, Yamamuro T, Higashi S, Kokubo T, Itoo S. A new glass-ceramic for bone-replacement-evaluation of its bonding to bone tissue. Journal of Biomedical Materials Research , 1985, 19(6): 685–698
doi: 10.1002/jbm.820190608
43 Ono K, Yamamuro T, Nakamura T, Kokubo T. Mechanical-properties of bone after implantation of apatite wollastonite containing glass ceramic fibrin mixture. Journal of Biomedical Materials Research , 1990, 24(1): 47–63
doi: 10.1002/jbm.820240106
44 Kawanabe K, Iida H, Matsusue Y, Nishimatsu H, Kasai R, Nakamura T. A-W glass ceramic as a bone substitute in cemented hip arthroplasty-15 hips followed 2-10 years. Acta Orthopaedica , 1998, 69(3): 237–242
doi: 10.3109/17453679809000922
45 Yang W, Zhou D, Yin G, Zheng C. Research and development of A-W bioactive glass ceramic. Journal of Biomedical Engineer , 2003, 20(3): 541–545 (in Chinese)
46 Yang W, Zhou D, Yin G, Chen H, Xiao B, Zhang Y. Study on a new type of apatite/wollastonite porous bioactive glass-ceramic. Journal of Biomedical Engineer , 2004, 21: 913–916 (in Chinese)
47 Shinzato S, Kobayashi M, Mousa W F, Kamimura M, Neo M, Kitamura Y, Kokubo T, Nakamura T. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. Journal of Biomedical Materials Research , 2000, 51(2): 258–272
doi: 10.1002/(SICI)1097-4636(200008)51:2<258::AID-JBM15>3.0.CO;2-S
48 Juhasz J A, Best S M, Brooks R, Kawashita M, Miyata N, Kokubo T, Nakamura T, Bonfield W. Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size. Biomaterials , 2004, 25(6): 949–955
doi: 10.1016/j.biomaterials.2003.07.005
49 Van de Velde K, Kiekens P. Biopolymers: overview of several properties and consequences on their applications. Polymer Testing , 2002, 21(4): 433–342
doi: 10.1016/S0142-9418(01)00107-6
50 Suyatma N E, Tighzert L, Copinet A, Coma V. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. Journal of Agricultural and Food Chemistry , 2005, 53(10): 3950–3957
doi: 10.1021/jf048790+
51 Wang Y, Qiu D, Cosgrove T, Denbow M L. A small-angle neutron scattering and rheology study of the composite of chitosan and gelatin. Colloids and Surfaces B: Biointerfaces , 2009, 70: 254–258
52 Arvanitoyannis I, Kolokuris I, Nakayama A, Yamamoto N, Aiba S. Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose. Carbohydrate Polymers , 1997, 34(1-2): 9–19
doi: 10.1016/S0144-8617(97)00089-1
53 Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules , 2011, 12(5): 1387–1408
doi: 10.1021/bm200083n
54 Suyatma N E, Copinet A, Tighzert L, Coma V. Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. Journal of Polymers and the Environment , 2004, 12(1): 1–6
doi: 10.1023/B:JOOE.0000003121.12800.4e
55 Sarasam A, Madihally S V. Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials , 2005, 26(27): 5500–5508
doi: 10.1016/j.biomaterials.2005.01.071
56 Santos C, Seabra P, Veleirinho B, Delgadillo I, da Silva J A L. Acetylation and molecular mass effects on barrier and mechanical properties of shortfin squid chitosan membranes. European Polymer Journal , 2006, 42(12): 3277–3285
doi: 10.1016/j.eurpolymj.2006.09.001
57 Costa E S, Barbosa-Stancioli E F, Mansur A A P, Vasconcelos W L, Mansur H S. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydrate Polymers , 2009, 76(3): 472–481
doi: 10.1016/j.carbpol.2008.11.015
58 Khan M, Ferdous S, Mustafa A I. Improvement of physico-mechanical properties of chitosan films by photocuring with acrylic monomers. Journal of Polymers and the Environment , 2005, 13(2): 193–201
doi: 10.1007/s10924-005-2950-z
59 Ji B, Gao H. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids , 2004, 52(9): 1963–1990
doi: 10.1016/j.jmps.2004.03.006
60 Sionkowska A, Wisniewski M, Skopinska J, Poggi G F, Marsano E, Maxwell C A, Wess T J. Thermal and mechanical properties of UV irradiated collagen/chitosan thin films. Polymer Degradation & Stability , 2006, 91(12): 3026–3032
doi: 10.1016/j.polymdegradstab.2006.08.009
61 Saito H, Murabayashi S, Mitamura Y, Taguchi T. Characterization of alkali-treated collagen gels prepared by different crosslinkers. Journal of Materials Science. Materials in Medicine , 2008, 19(3): 1297–1305
doi: 10.1007/s10856-007-3239-7
62 Sheu M T, Huang J C, Yeh G C, Ho H O. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials , 2001, 22(13): 1713–1719
doi: 10.1016/S0142-9612(00)00315-X
63 Yang L, Van der Werf K O, Fitie C F C, Bennink M L, Dijkstra P J, Feijen J. Mechanical properties of native and cross-linked type I collagen fibrils. Biophysical Journal , 2008, 94(6): 2204–2211
doi: 10.1529/biophysj.107.111013
64 van der Rijt J A J, van der Werf K O, Bennink M L, Dijkstra P J, Feijen J. Micromechanical testing of individual collagen fibrils. Macromolecular Bioscience , 2006, 6(9): 697–702
doi: 10.1002/mabi.200600063
65 Sionkowska A, Skopinska-Wisniewska J, Gawron M, Kozlowska J, Planecka A. Chemical and thermal cross-linking of collagen and elastin hydrolysates. International Journal of Biological Macromolecules , 2010, 47(4): 570–577
doi: 10.1016/j.ijbiomac.2010.08.004
66 Nam K, Kimura T, Kishida A. Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels. Biomaterials , 2007, 28(1): 1–8
doi: 10.1016/j.biomaterials.2006.08.002
67 Liu W, Deng C, McLaughlin C R, Fagerholm P, Lagali N S, Heyne B, Scaiano J C, Watsky M A, Kato Y, Munger R, Shinozaki N, Li F F, Griffith M. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials , 2009, 30(8): 1551–1559
doi: 10.1016/j.biomaterials.2008.11.022
68 Yamauchi K, Takeuchi N, Kurimoto A, Tanabe T. Films of collagen crosslinked by S-S bonds: preparation and characterization. Biomaterials , 2001, 22(8): 855–863
doi: 10.1016/S0142-9612(00)00249-0
69 Lim L T, Mine Y, Tung M A. Barrier and tensile properties of transglutaminase cross-linked gelatin films as affected by relative humidity, temperature, and glycerol content. Journal of Food Science , 1999, 64(4): 616–622
doi: 10.1111/j.1365-2621.1999.tb15096.x
70 Usta M, Piech D L, MacCrone R K, Hillig W B. Behavior and properties of neat and filled gelatins. Biomaterials , 2003, 24(1): 165–172
doi: 10.1016/S0142-9612(02)00274-0
71 de Carvalho R A, Grosso C R F. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids , 2004, 18(5): 717–722
doi: 10.1016/j.foodhyd.2003.10.005
72 Cao N, Fu Y, He J. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids , 2007, 21(4): 575–584
doi: 10.1016/j.foodhyd.2006.07.001
73 Fakirov Z S. Anbar T, Boz B, Bahar I, Evstatiev M, Apostolov A A, Mark J E, Kloczkowski A. Mechanical properties and transition temperatures of cross-linked oriented gelatin: 1.Static and dynamic mechanical properties of cross-linked gelatin. Colloid & Polymer Science , 1996, 274: 334–341
74 Santin M, Huang S J, Iannace S, Ambrosio L, Nicolais L, Peluso G. Synthesis and characterization of a new interpenetrated poly(2-hydroxyethylmethacrylate)-gelatin composite polymer. Biomaterials , 1996, 17(15): 1459–1467
doi: 10.1016/0142-9612(96)89769-9
75 Vemuri S. A screening technique to study the mechanical strength of gelatin formulations. Drug Development and Industrial Pharmacy , 2000, 26(10): 1115–1120
doi: 10.1081/DDC-100100277
76 Bigi A, Bracci B, Cojazzi G, Panzavolta S, Roveri N. Drawn gelatin films with improved mechanical properties. Biomaterials , 1998, 19(24): 2335–2340
doi: 10.1016/S0142-9612(98)00149-5
77 Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials , 2001, 22(8): 763–768
doi: 10.1016/S0142-9612(00)00236-2
78 Yakimets I, Wellner N, Smith A C, Wilson R H, Farhat I, Mitchell J. Mechanical properties with respect to water content of gelatin films in glassy state. Polymer , 2005, 46(26): 12577–12585
doi: 10.1016/j.polymer.2005.10.090
79 Lee K Y, Shim J, Lee H G. Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers , 2004, 56(2): 251–254
doi: 10.1016/j.carbpol.2003.04.001
80 Bigi A, Panzavolta S, Rubini K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials , 2004, 25(25): 5675–5680
doi: 10.1016/j.biomaterials.2004.01.033
81 Gómez-Guillén M C, Perez-Mateos M, Gomez-Estaca J, Lopez-Caballero E, Gimenez B, Montero P. Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology , 2009, 20(1): 3–16
doi: 10.1016/j.tifs.2008.10.002
82 Arvanitoyannis I, Nakayama A, Aiba S I. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydrate Polymers , 1998, 36(2-3): 105–119
doi: 10.1016/S0144-8617(98)00017-4
83 Arvanitoyannis I S, Nakayama A, Aiba S I. Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydrate Polymers , 1998, 37(4): 371–382
doi: 10.1016/S0144-8617(98)00083-6
84 Park J W, Scott Whiteside W, Cho S Y. Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. LWT- Food Science and Technology , 2008, 41(4): 692–700
doi: 10.1016/j.lwt.2007.04.015
85 Koob T J, Hernandez D J. Mechanical and thermal properties of novel polymerized NDGA-gelatin hydrogels. Biomaterials , 2003, 24(7): 1285–1292
doi: 10.1016/S0142-9612(02)00465-9
86 Karageorgiou V, Kaplan D. Porosity of 3D biornaterial scaffolds and osteogenesis. Biomaterials , 2005, 26(27): 5474–5491
doi: 10.1016/j.biomaterials.2005.02.002
87 Jones J R, Ehrenfried L M, Hench L L. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials , 2006, 27(7): 964–973
doi: 10.1016/j.biomaterials.2005.07.017
88 FitzGerald V, Martin R A, Jones J R, Qiu D, Wetherall K M, Moss R M, Newport R J. Bioactive glass sol-gel foam scaffolds: Evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering. Journal of Biomedical Materials Research. Part A , 2009, 91A(1): 76–83
doi: 10.1002/jbm.a.32206
89 Wu Z Y, Hill R G, Yue S, Nightingale D, Lee P D, Jones J R. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomaterialia , 2011, 7(4): 1807–1816
doi: 10.1016/j.actbio.2010.11.041
90 Chen Q Z Z, Thompson I D, Boccaccini A R. 45S5 Bioglass?-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials , 2006, 27(11): 2414–2425
doi: 10.1016/j.biomaterials.2005.11.025
91 Liu X, Huang W H, Fu H L, Yao A H, Wang D P, Pan H B, Lu W W. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. Journal of Materials Science. Materials in Medicine , 2009, 20(1): 365–372
doi: 10.1007/s10856-008-3582-3
92 Xue M, Feng D G, Li G D, Yang W Z, Zhou D L. Preparation of porous apatite-wollastonite bioactive glass ceramic (AW-GC) by dipping with polymer foams. Chinese Journal of Inorganic Chemistry , 2007, 23: 708–712
93 Cao B, Zhou D, Xue M, Li G, Yang W, Long Q, Ji L. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold. Applied Surface Science , 2008, 255(2): 505–508
doi: 10.1016/j.apsusc.2008.06.066
94 Baino F, Verne E, Vitale-Brovarone C. 3-D high-strength glass-ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Materials Science and Engineering: C , 2009, 29(6): 2055–2062
doi: 10.1016/j.msec.2009.04.002
95 Bellucci D, Cannillo V, Sola A, Chiellini F, Gazzarri M, Migone C. Macroporous Bioglass?-derived scaffolds for bone tissue regeneration. Ceramics International , 2011, 37(5): 1575–1585
doi: 10.1016/j.ceramint.2011.01.023
96 Yan H, Zhang K, Blanford C F, Francis L F, Stein A. In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structure. Chemistry of Materials , 2001, 13(4): 1374–1382
doi: 10.1021/cm000895e
97 Yan P H, Wang J Q, Ou J F, Li Z P, Lei Z Q, Yang S R. Synthesis and characterization of three-dimensional ordered mesoporous-macroporous bioactive glass. Materials Letters , 2010, 64(22): 2544–2547
doi: 10.1016/j.matlet.2010.08.033
98 Wei G F, Yan X X, Yi J, Zhao L Z, Zhou L, Wang Y H, Yu C Z. Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores. Microporous and Mesoporous Materials , 2011, 143(1): 157–165
doi: 10.1016/j.micromeso.2011.02.024
99 Hajiali H, Karbasi S, Hosseinalipour M, Rezaie H R. Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. Journal of Materials Science , 2010, 21(7): 2125–2133
doi: 10.1007/s10856-010-4075-8
100 Ryszkowska J L, Auguscik M, Sheikh A, Boccaccini A R. Biodegradable polyurethane composite scaffolds containing Bioglass? for bone tissue engineering. Composites Science and Technology , 2010, 70(13): 1894–1908
doi: 10.1016/j.compscitech.2010.05.011
101 Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceramics International , 2010, 36(8): 2431–2439
doi: 10.1016/j.ceramint.2010.07.010
102 Hong Z K, Reis R L, Mano J F. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia , 2008, 4(5): 1297–1306
doi: 10.1016/j.actbio.2008.03.007
103 Barroca N, Daniel-da-Silva A L, Vilarinho P M, Fernandes M H V. Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition. Acta Biomaterialia , 2010, 6(9): 3611–3620
doi: 10.1016/j.actbio.2010.03.032
104 Fabbri P, Cannillo V, Sola A, Dorigato A, Chiellini F. Highly porous polycaprolactone-45S5 Bioglass? scaffolds for bone tissue engineering. Composites Science and Technology , 2010, 70(13): 1869–1878
doi: 10.1016/j.compscitech.2010.05.029
105 Minaberry Y, Jobbagy M. Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying. Chemistry of Materials , 2011, 23(9): 2327–2332
doi: 10.1021/cm103362c
106 Doiphode N D, Huang T S, Leu M C, Rahaman M N, Day D E. Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for bone repair. Journal of Materials Science. Materials in Medicine , 2011, 22(3): 515–523
doi: 10.1007/s10856-011-4236-4
107 Garcia A, Izquierdo-Barba I, Colilla M, de Laorden C L, Vallet-Regí M. Lopez de laorden C, Vallet-Regi M. Preparation of 3-D scaffolds in the SiO2-P2O5 system with tailored hierarchical meso-macroporosity. Acta Biomaterialia , 2011, 7(3): 1265–1273
doi: 10.1016/j.actbio.2010.10.006
108 Yun H S, Kim S E, Park E K. Bioactive glass-poly(epsilon-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. Materials Science and Engineering: C , 2011, 31(2): 198–205
doi: 10.1016/j.msec.2010.08.020
109 Valliant E M, Jones J R. Softening bioactive glass for bone regeneration: sol-gel hybrid materials. Soft Matter , 2011, 7(11): 5083–5095
doi: 10.1039/c0sm01348j
110 Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith M E, Stevens M M, Jones J R. Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Advanced Functional Materials , 2010, 20(22): 3835–3845
doi: 10.1002/adfm.201000838
111 Pereira M M, Jones J R, Orefice R L, Hench L L. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. Journal of Materials Science . 2005, 16(11): 1045–1050
doi: 10.1007/s10856-005-4758-8
112 Costa H S, Rocha M F, Andrade G I, Barbosa-Stancioli E F, Pereira M M, Orefice R L, Vasconcelos W L, Mansur H S. Sol-gel derived composite from bioactive glass-polyvinyl alcohol. Journal of Materials Science , 2008, 43(2): 494–502
doi: 10.1007/s10853-007-1875-4
113 Costa H S, Stancioli E F B, Pereira M M, Orefice R L, Mansur H S. Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications. Journal of Materials Science , 2009, 20(2): 529–535
doi: 10.1007/s10856-008-3580-5
114 de Oliveira A A R, Ciminelli V, Dantas M S S, Mansur H S, Pereira M M. Acid character control of bioactive glass/polyvinyl alcohol hybrid foams produced by sol-gel. Journal of Sol-Gel Science and Technology , 2008, 47(3): 335–346
doi: 10.1007/s10971-008-1777-1
115 Costa H S, Mansur A A P, Pereira M M, Mansur H S. Engineered hybrid scaffolds of poly(vinyl alcohol)/bioactive glass for potential bone engineering applications: synthesis, characterization, cytocompatibility, and degradation. Journal of Nanomaterials , 2012, 2012: 1–16
doi: 10.1155/2012/718470
116 Lin S, Ionescu C, Pike K J, Smith M E, Jones J R. Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. Journal of Materials Chemistry , 2009, 19(9): 1276–1282
doi: 10.1039/b814292k
[1] Vahideh R. Hokmabad, Soodabeh Davaran, Marziyeh Aghazadeh, Effat Alizadeh, Roya Salehi, Ali Ramazani. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering[J]. Front. Chem. Sci. Eng., 2019, 13(1): 108-119.
[2] Yang YU, Hong ZHANG, Hong SUN, Dandan XING, Fanglian YAO. Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly(N-isopropylacrylamide) in coil and globule states for tissue engineering application[J]. Front Chem Sci Eng, 2013, 7(4): 388-400.
[3] Dongjiao ZHOU, Shaochuan SHEN, Junxian YUN, Kejian YAO, Dong-Qiang LIN. Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications[J]. Front Chem Sci Eng, 2012, 6(3): 339-347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed