Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (3) : 339-347    https://doi.org/10.1007/s11705-012-1209-1
RESEARCH ARTICLE
Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications
Dongjiao ZHOU1, Shaochuan SHEN1, Junxian YUN1(), Kejian YAO1, Dong-Qiang LIN2()
1. State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, China; 2. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 Download: PDF(416 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dextran-hyaluronate (Dex-HA) based supermacroporous cryogel scaffolds for soft tissue engineering were prepared by free radical cryo-copolymerization of aqueous solutions containing the dextran methacrylate (Dex-MA) and hyaluronate methacrylate (HA-MA) at various macromonomer concentrations under the freezing condition. It was observed that the suitable total concentration of macromonomers for the preparation of Dex-HA cryogel scaffold with satisfied properties was 5% (w/w) at the HA-MA concentration of 1% (w/v), which was then used to produce the test scaffold. The obtained cryogel scaffold with 5% (w/w) macromonomer solution had high water permeability (5.1 × 10-12 m2) and high porosity (92.4%). The pore diameter examined by scanning electron microscopy (SEM) was in a broad range of 50–135 μm with the mean pore diameter of 91 μm. Furthermore, the cryogel scaffold also had good elastic nature with the elastic modulus of 17.47±1.44 kPa. The culture of 3T3-L1 preadipocyte within the scaffold was investigated and observed by SEM. Cells clustered on the pore walls and grew inside the scaffold indicating the Dex-HA cryogel scaffold could be a promising porous biomaterial for applications in tissue engineering.

Keywords cryogel scaffold      tissue engineering      dextran      hyaluronate      3T3-L1 preadipocyte     
Corresponding Author(s): YUN Junxian,Email:yunjx@zjut.edu.cn; LIN Dong-Qiang,Email:lindq@zju.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Dongjiao ZHOU,Shaochuan SHEN,Junxian YUN, et al. Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications[J]. Front Chem Sci Eng, 2012, 6(3): 339-347.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1209-1
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I3/339
Fig.1  H-NMR spectra of Dex-MA (a) and HA-MA (b) dissolved in DO
Fig.2  Experimental and fitted flow rates as a function of pressure drop for 4%, 5% and 6% cryogel scaffold samples
Fig.3  The equilibrium mass swelling ratios of dry cryogel scaffolds (4%, 5% and 6%) in deionized water at 37°C
Fig.4  Microstructure of 4% (a), 5% (b) and 6% (c) cryogel scaffolds at 150 × magnification
Cryogel /%Pore size distribution /μmMean pore diameter /μmPorosity /%
455-1359092.9±1.2
550-1359192.3±1.9
640-1208080.6±2.1
Tab.1  Pore size distributions, mean pore diameters and porosities of cryogel scaffolds (4% - 6%)
Fig.5  Compressive stress-strain behavior of 4%, 5% and 6% hydrated cryogel scaffold samples
Fig.6  Morphology of 3T3-L1 preadipocytes within the scaffold. Cell growth observed by SEM (a, c) 1000 × magnification and inverted microscope (b, d) at 100 × magnification 6 days (a, b) and 17 days (c, d) post-seeding incubation
1 Malafaya P B, Silva G A, Reis R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews , 2007, 59(4-5): 207–233
doi: 10.1016/j.addr.2007.03.012
2 Liu C, Xia Z, Czernuszka J. Design and development of three-dimensional scaffolds for tissue engineering. Chemical Engineering Research & Design , 2007, 85(7): 1051–1064
doi: 10.1205/cherd06196
3 van Vlierberghe S, Cnudde V, Dubruel P, Masschaele B, Cosijns A, De Paepe I, Jacobs P J S, van Hoorebeke L, Remon J P, Schacht E. Porous gelatin hydrogels: cryogenic formation and structure analysis. Biomacromolecules , 2007, 8(2): 331–337
doi: 10.1021/bm060684o
4 Kathuria N, Tripathi A, Kar K, Kumar A. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomaterialia , 2009, 5(1): 406–418
doi: 10.1016/j.actbio.2008.07.009
5 Lévesque S G, Lim R M, Shoichet M S. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials , 2005, 26(35): 7436–7446
doi: 10.1016/j.biomaterials.2005.05.054
6 M?ller S, Weisser J, Bischoff S, Schnabelrauch M. Dextran and hyaluronan methacrylate based hydrogels as matrices for soft tissue reconstruction. Biomolecular Engineering , 2007, 24(5): 496–504
doi: 10.1016/j.bioeng.2007.08.014
7 Autissier A, Visage C L, Pouzet C, Chaubet F, Letourneur D. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomaterialia , 2010, 6(9): 3640–3648
doi: 10.1016/j.actbio.2010.03.004
8 Davidenko N, Campbell J J, Thian E S, Watson C J, Cameron R E. Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomaterialia , 2010, 6(10): 3957–3968
doi: 10.1016/j.actbio.2010.05.005
9 Ibrahim S, Kothapalli C R, Kang Q K, Ramamurthi A. Characterization of glycidyl ethacrylate-crosslinked hyaluronan hydrogel scaffolds incorporating elastogenic hyaluronan oligomers. Acta Biomaterialia , 2010, 7(3): 653–665
10 Bloch K, Lozinsky V I, Galaev I Y, Yavriyanz K, Vorobeychik M, Azarov D, Damshkaln L G, Mattiasson B, Vardi P. Functional activity of insulinoma cells (INS-1E) and pancreatic islets cultured in agarose cryogel sponges. Journal of Biomedical Materials Research , 2005, 75(4): 802–809
11 Plieva F M, Oknianska A, Degerman E, Galaev I Y, Mattiasson B. Novel supermacroporous dextran gels. Journal of Biomaterials Science. Polymer Edition , 2006, 17(10): 1075–1092
doi: 10.1163/156856206778530722
12 Plieva F M, Xiao H T, Galaev I Y, Bergenst?hl B, Mattiasson B. Macroporous elastic polyacrylamide gels prepared at subzero temperatures: control of porous structure. Journal of Materials Chemistry , 2006, 16(41): 4065–4073
doi: 10.1039/b606734d
13 Plieva F M, Galaev I Y, Mattiasson B. Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications. Journal of Separation Science , 2007, 30(11): 1657–1671
doi: 10.1002/jssc.200700127
14 Dainiak M B, Allan I U, Savina I N, Cornelio L, James E S, James S L, Mikhalovsky S V, Jungvid H, Galaev I Y. Gelatin-fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials , 2010, 31(1): 67–76
doi: 10.1016/j.biomaterials.2009.09.029
15 Lozinsky V I. Cryogels on the basis of natural and synthetic polymers: preparation, properties and applications. Russian Chemical Reviews , 2002, 71(6): 489–511
doi: 10.1070/RC2002v071n06ABEH000720
16 Lozinsky V I. Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russian Chemical Bulletin , 2008, 57(5): 1015–1032
doi: 10.1007/s11172-008-0131-7
17 Yao K J, Yun J X, Shen S C, Wang L H, He X J, Yu X M. Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography. Journal of Chromatography. A , 2006, 1109(1): 103–110
doi: 10.1016/j.chroma.2006.01.014
18 Yun J X, Shen S C, Chen F, Yao K J. One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences , 2007, 860(1): 57–62
doi: 10.1016/j.jchromb.2007.10.015
19 Plieva F M, Galaev I, Noppe W, Mattiasson B. Cryogel applications in microbiology. Trends in Microbiology , 2008, 16(11): 543–551
doi: 10.1016/j.tim.2008.08.005
20 Nilsang S, Nehru V, Plieva F M, Nandakumar K S, Rakshit S K, Holmdahl R, Mattiasson B, Kuma A. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles. Biotechnology Progress , 2008, 24(5): 1122–1131
doi: 10.1002/btpr.28
21 Kirsebom H, Aguilar M R, Roman J S, Fernandez M, Prieto M A, Bondar B. Macroporous scaffolds based on chitosan and bioactive molecules. Journal of Bioactive and Compatible Polymers , 2007, 22(6): 621–636
doi: 10.1177/0883911507084293
22 Cadéel J A, van Luyn M J A, Brouwer L A, Plantinga J A, van Wachem P B, de Groot C J, den Otter W, Hennink W E. In vivo biocompatibility of dextran-based hydrogels. Journal of Biomedical Materials Research , 2000, 50(3): 397–404
doi: 10.1002/(SICI)1097-4636(20000605)50:3<397::AID-JBM14>3.0.CO;2-A
23 de Groot C J, van Luyn M J A, van Dijk-Wolthuis W N E, Cadéel J A, Plantinga J A, den Otter W, Hennink W E. In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials , 2001, 22(11): 1197–1203
doi: 10.1016/S0142-9612(00)00266-0
24 Liu Y X, Chan-Park M B. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials , 2009, 30(2): 196–207
doi: 10.1016/j.biomaterials.2008.09.041
25 van Dijk-Wolthuis W N E, Franssen O, Talsma H, van Steenbergen M J, Kettenes-van den Bosch J J, Hennink W E. Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules , 1995, 28(18): 6317–6322
doi: 10.1021/ma00122a044
26 van Dijk-Wolthuis W N E, Kettenes-van den Bosch J J, van der Kerk-van Hoof A, Hennink W E. Reaction of dextran with glycidyl methacrylate: an unexpected transesterification. Macromolecules , 1997, 30(11): 3411–3413
doi: 10.1021/ma961764v
27 Yao K J, Shen S C, Yun J X, Wang L H, He X J, Yu X M. Preparation of polyacrylamide-based supermacroporous monolithic cryogel beds under freezing-temperature variation conditions. Chemical Engineering Science , 2006, 61(20): 6701–6708
doi: 10.1016/j.ces.2006.06.022
28 Weng L H, Gouldstone A, Wu Y H, Chen W. Mechanically strong double network photo cross linked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan. Biomaterials , 2008, 29(14): 2153–2163
doi: 10.1016/j.biomaterials.2008.01.012
29 Harley B A, Leung J H, Silva E C C M, Gibson L J. Mechanical characterization of collagen-glycosaminoglycan scaffolds. Acta Biomaterialia , 2007, 3(4): 463–474
doi: 10.1016/j.actbio.2006.12.009
[1] Vahideh R. Hokmabad, Soodabeh Davaran, Marziyeh Aghazadeh, Effat Alizadeh, Roya Salehi, Ali Ramazani. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering[J]. Front. Chem. Sci. Eng., 2019, 13(1): 108-119.
[2] Yang YU, Hong ZHANG, Hong SUN, Dandan XING, Fanglian YAO. Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly(N-isopropylacrylamide) in coil and globule states for tissue engineering application[J]. Front Chem Sci Eng, 2013, 7(4): 388-400.
[3] Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU. Progress of three-dimensional macroporous bioactive glass for bone regeneration[J]. Front Chem Sci Eng, 2012, 6(4): 470-483.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed