Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (2) : 262-272    https://doi.org/10.1007/s11705-017-1682-7
RESEARCH ARTICLE
Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes
Nachuan Wang1, Jun Wang1, Peng Zhang2, Wenbin Wang1, Chuangchao Sun1, Ling Xiao2, Chen Chen2, Bin Zhao2, Qingran Kong1, Baoku Zhu1()
1. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
2. Hainan Litree Purifying Technology Co., Ltd., Haikou 571126, China
 Download: PDF(468 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of amphiphilic copolymers containing poly(vinyl chloride-r-acrylic acid) (P(VC-r-AA) ) was synthesized and used to prepare membranes via a non-solvent induced phase separation method. The prepared membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle and zeta potential measurements. The copolymer P(VC-r-AA) chains did not dissolved in a coagulation bath, indicating that the AA segments were completely retained within the membrane. Enriching degree of AA segments in surface layer was 2 for copolymer membrane. In addition, the introduction of AA segments made the membrane electronegative and hydrophilic so that the membrane was sensitive to the solution pH. The fouling resistance, adsorption of Cu(II), Cr(III) and Ce(IV) ions and the desorption properties of the membranes were also determined. The copolymer membranes exhibited good antifouling performance with a fouling reversibility of 92%. The membranes also had good adsorption capacities for Cu(II), Cr(III) and Ce(IV) ions. The optimal pH for Cu(II) adsorption was 6 and the copolymer membrane has potential applications for low concentration Cu(II) removal.

Keywords poly(vinyl chloride-r-acrylic acid)      negatively charged PVC membrane      anti-fouling      heavy metal adsorption      Cu(II) removal     
Corresponding Author(s): Baoku Zhu   
Just Accepted Date: 17 August 2017   Issue Date: 09 May 2018
 Cite this article:   
Nachuan Wang,Jun Wang,Peng Zhang, et al. Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 262-272.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1682-7
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I2/262
Raw materials Units LA3 LA6 LA10 LA30
Deionized water G 2000 2000 2000 2000
Initiator G 30 30 30 30
Emulsifier G 3 3 3 3
VC G 970 940 900 700
AA G 30 60 100 300
Tab.1  Raw materials used to synthesize copolymers
Polymer Mna) PDI AA /wt-%b) Membrane ID
PVC 7.1 × 104 1.91 0 M0
LA3 7.3 × 104 1.87 2.64 M1
LA6 6.9 × 104 1.86 4.92 M2
LA10 6.5 × 104 1.83 8.99 M3
LA30 6.2 × 104 1.96 27.21 M4
Tab.2  The molecular weight, PDI, composition and ID of polymer membranes
Fig.1  SEM images of membranes cast from pristine PVC (M0) and copolymers (M1-4)
Fig.2  XPS spectra of PVC membrane (M0) and copolymer membrane surfaces (M1-4)
Membrane C /% O /% Cl /% AA segments wt-% in membrane AA segments wt-% in surface layer a) Enrichment ratio b)
M0 66.76 0 33.24 ? ? ?
M1 66.20 2.83 30.97 2.64 5.02 1.90
M2 65.82 5.22 28.96 4.92 9.48 1.92
M3 64.95 10.07 24.97 8.99 18.75 2.08
M4 63.02 24.37 12.61 27.21 53.51 1.96
Tab.3  The chemical compositions in surface layer of PVC and copolymer membranes
Fig.3  Time-dependent contact angles for the PVC (M0) and copolymer (M1-4) membrane surfaces. LA3 (M1), LA6 (M2), LA10 (M3) and LA30 (M4)
Fig.4  Zeta potentials as a function of pH for the PVC (M0) and copolymer (M1-4) membrane surfaces. LA3 (M1), LA6 (M2), LA10 (M3) and LA30 (M4)
Fig.5  (a) Solute separation curves plotted on a log-normal probability scale and (b) pore radius distribution curves for copolymer membranes
Membrane Mean pore size µp/nm Geometric std. dev. σp
M1 3.30 1.80
M2 4.02 1.81
M3 4.53 1.82
M4 5.31 1.86
Tab.4  Geometric mean pore sizes and standard deviations for copolymer membranes calculated from separation curves
Fig.6  BSA fouling performance of the pristine PVC (M0) and copolymer M3 and M4 membranes: time dependent flux for 3 stages: (a) pure water filtration, (b) 1000 ppm BSA PBS filtration, and (c) pure water filtration after back flushing at 0.01 MPa for 30 min
fouling properties Membrane
M0 M3 M4
pH 2.4 4.8 7.4 11 2.4 4.8 7.4 11 2.4 4.8 7.4 11
FRR 0.74 0.65 0.81 0.86 0.62 0.41 0.92 0.96 0.56 0.38 0.99 0.99
Rt 0.28 0.42 0.21 0.17 0.42 0.60 0.13 0.11 0.44 0.62 0.08 0.09
Rr 0.02 0.07 0.03 0.03 0.04 0.01 0.05 0.08 0.00 0.00 0.08 0.08
Rir 0.26 0.35 0.19 0.14 0.38 0.59 0.08 0.04 0.44 0.62 0.01 0.01
RRF 0.06 0.17 0.13 0.20 0.10 0.02 0.36 0.69 0.01 0.01 0.89 0.92
RIF 0.94 0.83 0.87 0.80 0.90 0.98 0.64 0.31 0.99 0.99 0.11 0.08
Tab.5  Flux recovery and filtration resistance of different membranes
Fig.7  Charge state of BSA and carboxyl groups and their dominant interactions at different pH values
Fig.8  Ion adsorption for the pure PVC membrane (M0) and for the copolymer membranes M1, M2, M3 and M4 (pH= 6.0)
Fig.9  (a) The Cu(II) adsorption capacity of the P(VC-r-AA) M4 membrane at different pH values and (b) desorption (washed at pH 2)/re-adsorption (at pH 6) cycles
Fig.10  Adsorption kinetics of Cu(II) ions at pH 6 and desorption kinetics of Cu(II) ions at pH 2 on M4
Fig.11  Cu(II) removal during filtration cycles using M3 and M4 at pH 6 and at pH 2 (feed solution: 10 mg/L Cu II, 100 kPa, 25 °C). Regeneration was conducted by washing with acidic water (pH 2)
1 Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Science and technology for water purification in the coming decades. Nature, 2008, 452(7185): 301–310
https://doi.org/10.1038/nature06599
2 Yang Q, Adrus N, Tomicki F, Ulbricht M. Composites of functional polymeric hydrogels and porous membranes. Journal of Materials Chemistry, 2011, 21(21): 2783–2811
https://doi.org/10.1039/C0JM02234A
3 Zhang G L, Lin L, Meng Q, Xu Y Y. Distillation of methanol–water solution in hollow fibers. Separation and Purification Technology, 2007, 56(2): 143–149
https://doi.org/10.1016/j.seppur.2007.01.016
4 Arnal J M, Garcia-Fayos B, Verdu G, Lora J. Ultrafiltration as an alternative membrane technology to obtain safe drinking water from surface water: 10 years of experience on the scope of the AQUAPOT Project. Desalination, 2009, 248(1): 34–41
https://doi.org/10.1016/j.desal.2008.05.035
5 Goncalves B. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science, 2000, 169(2): 287–299
https://doi.org/10.1016/S0376-7388(99)00344-0
6 Idris A, Zain N M, Noordin M Y. Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination, 2007, 207(1-3): 324–339
https://doi.org/10.1016/j.desal.2006.08.008
7 Chakrabarty B, Ghoshal A K, Purkait M K. Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. Journal of Membrane Science, 2008, 315(1): 36–47
https://doi.org/10.1016/j.memsci.2008.02.027
8 Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wang Z, Qian X. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(9): 3101–3111
https://doi.org/10.1039/c2ta01415g
9 Kang G, Cao Y. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—a review. Journal of Membrane Science, 2014, 463(1): 145–165
https://doi.org/10.1016/j.memsci.2014.03.055
10 Kim I C, Yun H G, Lee K H. Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process. Journal of Membrane Science, 2002, 199(1-2): 75–84
https://doi.org/10.1016/S0376-7388(01)00680-9
11 Wan L S, Xu Z K, Wang Z G. Leaching of PVP from polyacrylonitrile/PVP blending membranes: A comparative study of asymmetric and dense membranes. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(10): 1490–1498
https://doi.org/10.1002/polb.20804
12 Yang S, Liu Z. Preparation and characterization of polyacrylonitrile ultrafiltration membranes. Journal of Membrane Science, 2005, 246(1): 7–12
https://doi.org/10.1016/j.memsci.2004.04.014
13 Ghazanfari D, Bastani D, Mousavi S A. Preparation and characterization of poly(vinyl chloride) (PVC) based membrane for wastewater treatment. Journal of Water Process Engineering, 2017, 16: 98–107
https://doi.org/10.1016/j.jwpe.2016.12.001
14 Liu W D, Zhang Y H, Fang L F, Zhu B K, Zhu L P. Antifouling property of poly(vinyl chloride) membranes modified by amphiphilic copolymers P(MMA-b-MAA). Chinese Journal of Polymer Science, 2012, 30(4): 568–577
https://doi.org/10.1007/s10118-012-1153-z
15 Fang L F, Zhu B K, Zhu L P, Matsuyama H, Zhao S F. Structures and antifouling properties of polyvinyl chloride/poly(methyl methacrylate)-graft-poly (ethylene glycol) blend membranes formed in different coagulation media. Journal of Membrane Science, 2017, 524: 235–244
https://doi.org/10.1016/j.memsci.2016.11.026
16 Farahani M H, Rabiee H, Vatanpour V, Borghei S M. Fouling reduction of emulsion polyvinylchloride ultrafiltration membranes blended by PEG: The effect of additive concentration and coagulation bath temperature. Desalination and Water Treatment, 2015, 57(26): 11931–11944
https://doi.org/10.1080/19443994.2015.1048739
17 Liu L, Zhao C, Yang F. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment. Water Research, 2012, 46(6): 1969–1978
https://doi.org/10.1016/j.watres.2012.01.017
18 Liu B, Chen C, Zhang W, Crittenden J, Chen Y. Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additiveson properties and performance. Desalination, 2012, 307(49): 26–33
https://doi.org/10.1016/j.desal.2012.07.036
19 Huang L, Song Z, Zhi W, Wu J, Wang J, Wang S. In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. Journal of Membrane Science, 2015, 499: 269–281
https://doi.org/10.1016/j.memsci.2015.10.055
20 Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling. Journal of Membrane Science, 2009, 342(1): 97–104
https://doi.org/10.1016/j.memsci.2009.06.022
21 Yue W W, Li H J, Xiang T, Qin H, Sun S D, Zhao C S. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. Journal of Membrane Science, 2013, 446(11): 79–91
https://doi.org/10.1016/j.memsci.2013.06.029
22 Li Y, Zhang H, Zhang H, Cao J, Xu W, Li X. Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application. Journal of Membrane Science, 2014, 454(454): 478–487
https://doi.org/10.1016/j.memsci.2013.12.015
23 Eren E, Sarihan A, Eren B, Gumus H, Kocak F O. Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier. Journal of Membrane Science, 2015, 475(475): 1–8
https://doi.org/10.1016/j.memsci.2014.10.010
24 Su Y, Sun M, Wang L, Jiang Z. Ion-pair formation and ion-specific flux of a weak polyelectrolyte membrane. Journal of Physical Chemistry B, 2009, 113(28): 9454–9460
https://doi.org/10.1021/jp901618k
25 Belfer S, Fainshtain R, Purinson Y, Gilron J, Nystrom M, Manttari M. Modification of NF membrane properties by in situ redox initiated graftpolymerization with hydrophilic monomers. Journal of Membrane Science, 2004, 239(1): 55–64
https://doi.org/10.1016/j.memsci.2003.09.029
26 Steen M L, Hymas L, Havey E D, Capps N E, Castner D G, Fisher E R. Low temperature plasma treatment of asymmetric polysulfone membranes forpermanent hydrophilic surface modification. Journal of Membrane Science, 2001, 188(1): 97–114
https://doi.org/10.1016/S0376-7388(01)00375-1
27 Yu H, Cao Y, Kang G, Liu J, Li M, Yuan Q. Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitter ionic copolymer via UV-initiated polymerization. Journal of Membrane Science, 2009, 342(1-2): 6–13
https://doi.org/10.1016/j.memsci.2009.05.041
28 Loh C H, Wang R. Insight into the role of amphiphilic pluronic block copolymer as pore-forming additive in PVDF membrane formation. Journal of Membrane Science, 2013, 446(11): 492–503
https://doi.org/10.1016/j.memsci.2013.07.016
29 Zhou Z, Rajabzadeh S, Shaikh A R, Kakihana Y, Ma W, Matsuyama H. Effect of surface properties on antifouling performance of poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate)/PVC blend membrane. Journal of Membrane Science, 2016, 514: 537–546
https://doi.org/10.1016/j.memsci.2016.05.008
30 Ma W, Rajabzadeh S, Shaikh A R, Kakihana Y, Sun Y, Matsuyama H. Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride) (PVDF) blend membranes. Journal of Membrane Science, 2016, 514: 429–439
https://doi.org/10.1016/j.memsci.2016.05.021
31 Rabiee H, Shahabadi S, Mokhtare A, Rabiei H, Alvandifar N. Enhancement in permeation and antifouling properties of PVC ultrafiltration membranes with addition of hydrophilic surfactant additives: Tween-20 and Tween-80. Journal of Environmental Chemical Engineering, 2016, 4(4): 4050–4061
https://doi.org/10.1016/j.jece.2016.09.015
32 Rabiee H, Farahani M H D A, Vatanpour V. Preparation and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane. Journal of Membrane Science, 2014, 472(4): 185–193
https://doi.org/10.1016/j.memsci.2014.08.051
33 Rabiee H, Vatanpour V, Farahani M H D A, Zarrabi H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Separation and Purification Technology, 2015, 156: 299–310
https://doi.org/10.1016/j.seppur.2015.10.015
34 Liu Z X, Mi Z M, Chen C H, Zhou H W, Zhao X G, Wang D M. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method. Applied Surface Science, 2016, 401: 69–78
https://doi.org/10.1016/j.apsusc.2016.12.228
35 Ravey M, Waterman J, Shorr L, Kramer M. Vinyl chloride-propylene copolymerization. Journal of Polymer Science Polymer Chemistry Edition, 1976, 14(7): 1609–1616
https://doi.org/10.1002/pol.1976.170140704
36 Schaefer J. Random monomer distributions in copolymers. Copolymerizations of ethylene-vinyl chloride and ethylene-vinyl acetate. Journal of Physical Chemistry, 1966, 70(6): 1975–1985
https://doi.org/10.1021/j100878a046
37 Du M, Weng Z X, Shan G R, Huang Z M, Pan Z R. Study on suspension copolymerization rate of vinyl chloride/N-phenylmaleimide. Journal of Applied Polymer Science, 1999, 73(13): 2649–2656
https://doi.org/10.1002/(SICI)1097-4628(19990923)73:13<2649::AID-APP13>3.0.CO;2-B
38 Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Macromolecules, 1995, 117(20): 127–134
39 Fang L F, Wang N C, Zhou M Y, Zhu B K, Zhu L P, John A E. Poly(N,N-dimethylaminoethyl methacrylate) grafted poly(vinyl chloride)s synthesized via ATRP process and their membranes for dye separation. Chinese Journal of Polymer Science, 2015, 33(11): 1491–1502
https://doi.org/10.1007/s10118-015-1701-4
40 Singh S, Khulbe K, Matsuura T, Ramamurthy P. Membrane characterization by solute transport and atomic force microscopy. Journal of Membrane Science, 1998, 142(1): 111–127
https://doi.org/10.1016/S0376-7388(97)00329-3
41 Mochizuki S, Zydney A L. Theoretical analysis of pore size distribution effects on membrane transport. Journal of Membrane Science, 1993, 82(3): 211–227
https://doi.org/10.1016/0376-7388(93)85186-Z
42 Domenech-Carbo M T, Aura-Castro E. Evaluation of the phase inversion process as an application method for synthetic polymers in conservation work. Studies in Conservation, 1999, 44(1): 19–28
43 Hester J F, Banerjee P, Mayes A M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules, 2010, 32(5): 1643–1650
https://doi.org/10.1021/ma980707u
44 Asatekin A, Kang S, Elimelech M, Mayes A M. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. Journal of Membrane Science, 2007, 298(1-2): 136–146
https://doi.org/10.1016/j.memsci.2007.04.011
45 Taniguchi M, Pieracci J P, Belfort G. Effect of undulations on surface energy: A quantitative assessment. Langmuir, 2001, 17(14): 4312–4315
https://doi.org/10.1021/la001791l
46 Burns D B, Zydney A L. Buffer effects on the zeta potential of ultrafiltration membranes. Journal of Membrane Science, 2000, 172(1): 39–48
https://doi.org/10.1016/S0376-7388(00)00315-X
47 Gao J, Sun S P, Zhu W P, Chung T S. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Research, 2014, 63(7): 252–261
https://doi.org/10.1016/j.watres.2014.06.006
48 Konradi R, Rühe J. Interaction of poly(methacrylic acid) brushes with metal ions: An infrared investigation. Macromolecules, 2004, 37(18): 4345–4354
https://doi.org/10.1021/ma049126x
49 Fields S. Taking the lead and copper rule to task. Environmental Health Perspectives, 2006, 114(114): A276
https://doi.org/10.1289/ehp.114-a276
50 Hsieh S H, Horng J J, Tsai C K. Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions. Journal of Materials Research, 2006, 21(5): 1269–1273
https://doi.org/10.1557/jmr.2006.0155
51 Cui L M, Wang Y G, Gao L, Hu L H, Yan L G, Wei Q, Du B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chemical Engineering Journal, 2015, 281: 1–10
https://doi.org/10.1016/j.cej.2015.06.043
52 Wang C C, Gea H, Zhao Y Y, Liu S S, Zou Y, Zhang W B. Study on the adsorption of Cu(II) by folic acid functionalized magnetic graphene oxide. Journal of Magnetism and Magnetic Materials, 2017, 423(1): 421–435
https://doi.org/10.1016/j.jmmm.2016.09.128
53 Yan H, Yang L, Yang Z, Yang H, Li A, Cheng R. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of Copper(II) ions from aqueous solutions. Journal of Hazardous Materials, 2012, 229-230: 371–380
https://doi.org/10.1016/j.jhazmat.2012.06.014
54 Monier M, Ayad D M, Wei Y, Sarhan A A. Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II) ions, Co(II) ions, and Ni(II) ions. Reactive & Functional Polymers, 2010, 70(4): 257–266
https://doi.org/10.1016/j.reactfunctpolym.2010.01.002
55 Guptaa V K, Agarwal S, Bharti A K, Sadegh H. Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu(II) removal. Journal of Molecular Liquids, 2017, 230(3): 667–673
https://doi.org/10.1016/j.molliq.2017.01.083
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed