|
|
Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes |
Nachuan Wang1, Jun Wang1, Peng Zhang2, Wenbin Wang1, Chuangchao Sun1, Ling Xiao2, Chen Chen2, Bin Zhao2, Qingran Kong1, Baoku Zhu1( ) |
1. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China 2. Hainan Litree Purifying Technology Co., Ltd., Haikou 571126, China |
|
|
Abstract A series of amphiphilic copolymers containing poly(vinyl chloride-r-acrylic acid) (P(VC-r-AA) ) was synthesized and used to prepare membranes via a non-solvent induced phase separation method. The prepared membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle and zeta potential measurements. The copolymer P(VC-r-AA) chains did not dissolved in a coagulation bath, indicating that the AA segments were completely retained within the membrane. Enriching degree of AA segments in surface layer was 2 for copolymer membrane. In addition, the introduction of AA segments made the membrane electronegative and hydrophilic so that the membrane was sensitive to the solution pH. The fouling resistance, adsorption of Cu(II), Cr(III) and Ce(IV) ions and the desorption properties of the membranes were also determined. The copolymer membranes exhibited good antifouling performance with a fouling reversibility of 92%. The membranes also had good adsorption capacities for Cu(II), Cr(III) and Ce(IV) ions. The optimal pH for Cu(II) adsorption was 6 and the copolymer membrane has potential applications for low concentration Cu(II) removal.
|
Keywords
poly(vinyl chloride-r-acrylic acid)
negatively charged PVC membrane
anti-fouling
heavy metal adsorption
Cu(II) removal
|
Corresponding Author(s):
Baoku Zhu
|
Just Accepted Date: 17 August 2017
Issue Date: 09 May 2018
|
|
1 |
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Science and technology for water purification in the coming decades. Nature, 2008, 452(7185): 301–310
https://doi.org/10.1038/nature06599
|
2 |
Yang Q, Adrus N, Tomicki F, Ulbricht M. Composites of functional polymeric hydrogels and porous membranes. Journal of Materials Chemistry, 2011, 21(21): 2783–2811
https://doi.org/10.1039/C0JM02234A
|
3 |
Zhang G L, Lin L, Meng Q, Xu Y Y. Distillation of methanol–water solution in hollow fibers. Separation and Purification Technology, 2007, 56(2): 143–149
https://doi.org/10.1016/j.seppur.2007.01.016
|
4 |
Arnal J M, Garcia-Fayos B, Verdu G, Lora J. Ultrafiltration as an alternative membrane technology to obtain safe drinking water from surface water: 10 years of experience on the scope of the AQUAPOT Project. Desalination, 2009, 248(1): 34–41
https://doi.org/10.1016/j.desal.2008.05.035
|
5 |
Goncalves B. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science, 2000, 169(2): 287–299
https://doi.org/10.1016/S0376-7388(99)00344-0
|
6 |
Idris A, Zain N M, Noordin M Y. Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination, 2007, 207(1-3): 324–339
https://doi.org/10.1016/j.desal.2006.08.008
|
7 |
Chakrabarty B, Ghoshal A K, Purkait M K. Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. Journal of Membrane Science, 2008, 315(1): 36–47
https://doi.org/10.1016/j.memsci.2008.02.027
|
8 |
Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wang Z, Qian X. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(9): 3101–3111
https://doi.org/10.1039/c2ta01415g
|
9 |
Kang G, Cao Y. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—a review. Journal of Membrane Science, 2014, 463(1): 145–165
https://doi.org/10.1016/j.memsci.2014.03.055
|
10 |
Kim I C, Yun H G, Lee K H. Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process. Journal of Membrane Science, 2002, 199(1-2): 75–84
https://doi.org/10.1016/S0376-7388(01)00680-9
|
11 |
Wan L S, Xu Z K, Wang Z G. Leaching of PVP from polyacrylonitrile/PVP blending membranes: A comparative study of asymmetric and dense membranes. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(10): 1490–1498
https://doi.org/10.1002/polb.20804
|
12 |
Yang S, Liu Z. Preparation and characterization of polyacrylonitrile ultrafiltration membranes. Journal of Membrane Science, 2005, 246(1): 7–12
https://doi.org/10.1016/j.memsci.2004.04.014
|
13 |
Ghazanfari D, Bastani D, Mousavi S A. Preparation and characterization of poly(vinyl chloride) (PVC) based membrane for wastewater treatment. Journal of Water Process Engineering, 2017, 16: 98–107
https://doi.org/10.1016/j.jwpe.2016.12.001
|
14 |
Liu W D, Zhang Y H, Fang L F, Zhu B K, Zhu L P. Antifouling property of poly(vinyl chloride) membranes modified by amphiphilic copolymers P(MMA-b-MAA). Chinese Journal of Polymer Science, 2012, 30(4): 568–577
https://doi.org/10.1007/s10118-012-1153-z
|
15 |
Fang L F, Zhu B K, Zhu L P, Matsuyama H, Zhao S F. Structures and antifouling properties of polyvinyl chloride/poly(methyl methacrylate)-graft-poly (ethylene glycol) blend membranes formed in different coagulation media. Journal of Membrane Science, 2017, 524: 235–244
https://doi.org/10.1016/j.memsci.2016.11.026
|
16 |
Farahani M H, Rabiee H, Vatanpour V, Borghei S M. Fouling reduction of emulsion polyvinylchloride ultrafiltration membranes blended by PEG: The effect of additive concentration and coagulation bath temperature. Desalination and Water Treatment, 2015, 57(26): 11931–11944
https://doi.org/10.1080/19443994.2015.1048739
|
17 |
Liu L, Zhao C, Yang F. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment. Water Research, 2012, 46(6): 1969–1978
https://doi.org/10.1016/j.watres.2012.01.017
|
18 |
Liu B, Chen C, Zhang W, Crittenden J, Chen Y. Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additiveson properties and performance. Desalination, 2012, 307(49): 26–33
https://doi.org/10.1016/j.desal.2012.07.036
|
19 |
Huang L, Song Z, Zhi W, Wu J, Wang J, Wang S. In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. Journal of Membrane Science, 2015, 499: 269–281
https://doi.org/10.1016/j.memsci.2015.10.055
|
20 |
Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling. Journal of Membrane Science, 2009, 342(1): 97–104
https://doi.org/10.1016/j.memsci.2009.06.022
|
21 |
Yue W W, Li H J, Xiang T, Qin H, Sun S D, Zhao C S. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. Journal of Membrane Science, 2013, 446(11): 79–91
https://doi.org/10.1016/j.memsci.2013.06.029
|
22 |
Li Y, Zhang H, Zhang H, Cao J, Xu W, Li X. Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application. Journal of Membrane Science, 2014, 454(454): 478–487
https://doi.org/10.1016/j.memsci.2013.12.015
|
23 |
Eren E, Sarihan A, Eren B, Gumus H, Kocak F O. Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier. Journal of Membrane Science, 2015, 475(475): 1–8
https://doi.org/10.1016/j.memsci.2014.10.010
|
24 |
Su Y, Sun M, Wang L, Jiang Z. Ion-pair formation and ion-specific flux of a weak polyelectrolyte membrane. Journal of Physical Chemistry B, 2009, 113(28): 9454–9460
https://doi.org/10.1021/jp901618k
|
25 |
Belfer S, Fainshtain R, Purinson Y, Gilron J, Nystrom M, Manttari M. Modification of NF membrane properties by in situ redox initiated graftpolymerization with hydrophilic monomers. Journal of Membrane Science, 2004, 239(1): 55–64
https://doi.org/10.1016/j.memsci.2003.09.029
|
26 |
Steen M L, Hymas L, Havey E D, Capps N E, Castner D G, Fisher E R. Low temperature plasma treatment of asymmetric polysulfone membranes forpermanent hydrophilic surface modification. Journal of Membrane Science, 2001, 188(1): 97–114
https://doi.org/10.1016/S0376-7388(01)00375-1
|
27 |
Yu H, Cao Y, Kang G, Liu J, Li M, Yuan Q. Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitter ionic copolymer via UV-initiated polymerization. Journal of Membrane Science, 2009, 342(1-2): 6–13
https://doi.org/10.1016/j.memsci.2009.05.041
|
28 |
Loh C H, Wang R. Insight into the role of amphiphilic pluronic block copolymer as pore-forming additive in PVDF membrane formation. Journal of Membrane Science, 2013, 446(11): 492–503
https://doi.org/10.1016/j.memsci.2013.07.016
|
29 |
Zhou Z, Rajabzadeh S, Shaikh A R, Kakihana Y, Ma W, Matsuyama H. Effect of surface properties on antifouling performance of poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate)/PVC blend membrane. Journal of Membrane Science, 2016, 514: 537–546
https://doi.org/10.1016/j.memsci.2016.05.008
|
30 |
Ma W, Rajabzadeh S, Shaikh A R, Kakihana Y, Sun Y, Matsuyama H. Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride) (PVDF) blend membranes. Journal of Membrane Science, 2016, 514: 429–439
https://doi.org/10.1016/j.memsci.2016.05.021
|
31 |
Rabiee H, Shahabadi S, Mokhtare A, Rabiei H, Alvandifar N. Enhancement in permeation and antifouling properties of PVC ultrafiltration membranes with addition of hydrophilic surfactant additives: Tween-20 and Tween-80. Journal of Environmental Chemical Engineering, 2016, 4(4): 4050–4061
https://doi.org/10.1016/j.jece.2016.09.015
|
32 |
Rabiee H, Farahani M H D A, Vatanpour V. Preparation and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane. Journal of Membrane Science, 2014, 472(4): 185–193
https://doi.org/10.1016/j.memsci.2014.08.051
|
33 |
Rabiee H, Vatanpour V, Farahani M H D A, Zarrabi H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Separation and Purification Technology, 2015, 156: 299–310
https://doi.org/10.1016/j.seppur.2015.10.015
|
34 |
Liu Z X, Mi Z M, Chen C H, Zhou H W, Zhao X G, Wang D M. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method. Applied Surface Science, 2016, 401: 69–78
https://doi.org/10.1016/j.apsusc.2016.12.228
|
35 |
Ravey M, Waterman J, Shorr L, Kramer M. Vinyl chloride-propylene copolymerization. Journal of Polymer Science Polymer Chemistry Edition, 1976, 14(7): 1609–1616
https://doi.org/10.1002/pol.1976.170140704
|
36 |
Schaefer J. Random monomer distributions in copolymers. Copolymerizations of ethylene-vinyl chloride and ethylene-vinyl acetate. Journal of Physical Chemistry, 1966, 70(6): 1975–1985
https://doi.org/10.1021/j100878a046
|
37 |
Du M, Weng Z X, Shan G R, Huang Z M, Pan Z R. Study on suspension copolymerization rate of vinyl chloride/N-phenylmaleimide. Journal of Applied Polymer Science, 1999, 73(13): 2649–2656
https://doi.org/10.1002/(SICI)1097-4628(19990923)73:13<2649::AID-APP13>3.0.CO;2-B
|
38 |
Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Macromolecules, 1995, 117(20): 127–134
|
39 |
Fang L F, Wang N C, Zhou M Y, Zhu B K, Zhu L P, John A E. Poly(N,N-dimethylaminoethyl methacrylate) grafted poly(vinyl chloride)s synthesized via ATRP process and their membranes for dye separation. Chinese Journal of Polymer Science, 2015, 33(11): 1491–1502
https://doi.org/10.1007/s10118-015-1701-4
|
40 |
Singh S, Khulbe K, Matsuura T, Ramamurthy P. Membrane characterization by solute transport and atomic force microscopy. Journal of Membrane Science, 1998, 142(1): 111–127
https://doi.org/10.1016/S0376-7388(97)00329-3
|
41 |
Mochizuki S, Zydney A L. Theoretical analysis of pore size distribution effects on membrane transport. Journal of Membrane Science, 1993, 82(3): 211–227
https://doi.org/10.1016/0376-7388(93)85186-Z
|
42 |
Domenech-Carbo M T, Aura-Castro E. Evaluation of the phase inversion process as an application method for synthetic polymers in conservation work. Studies in Conservation, 1999, 44(1): 19–28
|
43 |
Hester J F, Banerjee P, Mayes A M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules, 2010, 32(5): 1643–1650
https://doi.org/10.1021/ma980707u
|
44 |
Asatekin A, Kang S, Elimelech M, Mayes A M. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. Journal of Membrane Science, 2007, 298(1-2): 136–146
https://doi.org/10.1016/j.memsci.2007.04.011
|
45 |
Taniguchi M, Pieracci J P, Belfort G. Effect of undulations on surface energy: A quantitative assessment. Langmuir, 2001, 17(14): 4312–4315
https://doi.org/10.1021/la001791l
|
46 |
Burns D B, Zydney A L. Buffer effects on the zeta potential of ultrafiltration membranes. Journal of Membrane Science, 2000, 172(1): 39–48
https://doi.org/10.1016/S0376-7388(00)00315-X
|
47 |
Gao J, Sun S P, Zhu W P, Chung T S. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Research, 2014, 63(7): 252–261
https://doi.org/10.1016/j.watres.2014.06.006
|
48 |
Konradi R, Rühe J. Interaction of poly(methacrylic acid) brushes with metal ions: An infrared investigation. Macromolecules, 2004, 37(18): 4345–4354
https://doi.org/10.1021/ma049126x
|
49 |
Fields S. Taking the lead and copper rule to task. Environmental Health Perspectives, 2006, 114(114): A276
https://doi.org/10.1289/ehp.114-a276
|
50 |
Hsieh S H, Horng J J, Tsai C K. Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions. Journal of Materials Research, 2006, 21(5): 1269–1273
https://doi.org/10.1557/jmr.2006.0155
|
51 |
Cui L M, Wang Y G, Gao L, Hu L H, Yan L G, Wei Q, Du B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chemical Engineering Journal, 2015, 281: 1–10
https://doi.org/10.1016/j.cej.2015.06.043
|
52 |
Wang C C, Gea H, Zhao Y Y, Liu S S, Zou Y, Zhang W B. Study on the adsorption of Cu(II) by folic acid functionalized magnetic graphene oxide. Journal of Magnetism and Magnetic Materials, 2017, 423(1): 421–435
https://doi.org/10.1016/j.jmmm.2016.09.128
|
53 |
Yan H, Yang L, Yang Z, Yang H, Li A, Cheng R. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of Copper(II) ions from aqueous solutions. Journal of Hazardous Materials, 2012, 229-230: 371–380
https://doi.org/10.1016/j.jhazmat.2012.06.014
|
54 |
Monier M, Ayad D M, Wei Y, Sarhan A A. Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II) ions, Co(II) ions, and Ni(II) ions. Reactive & Functional Polymers, 2010, 70(4): 257–266
https://doi.org/10.1016/j.reactfunctpolym.2010.01.002
|
55 |
Guptaa V K, Agarwal S, Bharti A K, Sadegh H. Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu(II) removal. Journal of Molecular Liquids, 2017, 230(3): 667–673
https://doi.org/10.1016/j.molliq.2017.01.083
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|