Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (1) : 46-58    https://doi.org/10.1007/s11705-018-1723-x
REVIEW ARTICLE
Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing
Qing-Xi Wu1,2, Yi-Xin Guan1, Shan-Jing Yao1()
1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
2. School of Life Sciences, Anhui University; Anhui Key Laboratory of Modern Biomanufacturing; Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei 230601, China
 Download: PDF(2073 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS’s physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers’ designing, such as micro-cell-carriers, micro-drug-carriers, etc., are presented.

Keywords sodium cellulose sulfate      biomaterial      physicochemical properties      microcarriers     
Corresponding Author(s): Shan-Jing Yao   
Just Accepted Date: 15 March 2018   Online First Date: 22 May 2018    Issue Date: 25 February 2019
 Cite this article:   
Qing-Xi Wu,Yi-Xin Guan,Shan-Jing Yao. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing[J]. Front. Chem. Sci. Eng., 2019, 13(1): 46-58.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1723-x
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I1/46
Fig.1  Preparation of NaCS using refined cotton or cotton linter as raw materials by heterogeneous reaction
Sulfate reagents Advantages Disadvantages Ref.
DMF and SO3 Substitution uniformly;
little molecular weight reduction; no using of anhydrous sulfuric acid
Difficulty in handling of SO3; reaction violently [15]
DMF and N2O4 Preparation and handling easily;
substitution uniformly; using less sulfuric acid; no acetylation of cellulose; preferably reaction at room temperature
Toxicity of N2O4; high production cost [16]
Chlorosulfuric acid and pyridine Substitution uniformly; a high degree of substitution; no significant degradation Highly toxicity of chlorosulfuric acid; serious environmental pollution [17]
Tab.1  Advantages and disadvantages of different homogeneous strategies
Fig.2  Promising applications of NaCS in different fields
Measurement methods Principle Advantages Disadvantages Ref.
Polyelectrolytes titration Reacting and forming particles that having a UV absorption peak at 290 nm, using spectrophotometer to judge the end of titration A simple and rapid method Difficult to judge the end of titration accurately [39]
Barium sulfate turbidimetrya) Hydrolyze NaCS with 1 mol·L−1 HCl to release SO3 groups, adding BaCl2 to form BaSO4 precipitate, drawing the standard curve with K2SO4 and BaCl2 at 360 nm A rapid and convenient method Existing some experimental errors due to the turbid liquid of BaSO4 particles distributed non-uniformly with time [53]
Element analysisb) Contents of carbon, hydrogen, nitrogen and sulfur can be determined via Elemental Analyser Precise, reducing the manual measurement errors High cost relatively [18]
13C-NMR spectroscopy Based on 13C-NMR spectroscopy by means of NMR spectrometer Good accuracy and credibility High analysis cost [18]
FT Raman spectroscopy Record FT Raman spectra with a spectrometer via a liquid-nitrogen cooled Ge diode as detector A rapid method of quantifying the total DS of NaCS Need high-end equipments, high analysis costs and a certain level of operational technology [54]
Tab.2  DS measurement methods of NaCS and their advantages and disadvantages
Sample DS by elemental analysis DS by 13C-NMR
DStotal DSC2 DSC3 DSC6
Sul-10 1.04 1.13 0.38 0.75
Sul-11 0.31 0.32 0.32
Sul-13 0.41 0.48 0.05 0.43
Sul-15 0.51 0.55 0.55
Tab.3  Comparison of the DS values of NaCSs measured by elemental analysis and 13C-NMR spectroscopy methodsa)
Fig.3  Salts effects on the viscosity and formation of NaCS. (a) Viscosity of NaCS (0.05%, w/w) with different concentration of salts; (b) formation of NaCS in salt free solution; (c) formation of NaCS in salt solution. Modified and cited from Wang et al. [39]
Microcarriers /polymers Immobilized microbes Targeted product Level Ref.
NaCS/PDMDAAC microcapsules Saccharomyces cerevisiae Ethanol 47.0 g/L [43]
NaCS/PDMDAAC microcapsules Bacillus Subtilis ATE Max. activity of 2050 UK/mL [57]
NaCS/PDMDAAC microcapsules Monascus purpureus Red pigments 13.4 g/L at five batch [58]
SA/NaCS-CaCl2/PMCG microcapsules Bacillus subtilis Nattokinase Max. activity of 2465 IU/mL [59]
NaCS/PDMDAAC microcapsules Brevibacterium flavum Glutamic acid 15.29 g/(L?h) [60]
NaCS/PDMDAAC microcapsules Candida valida Lipase Max. 10 U/mL at 26 h [61]
NaCS/PDMDAAC microcapsules Klebsiella pneumonia; Candida krusei ICM-Y-05, Klebsiella pneumoniae ZJU 5205 1,3-propanediol Max. 63.1 g/L in batch culture [6264]
NaCS/PDMDAAC microcapsules Mixed flora Hydrogen 1.73–1.81 mol H2/mol glucose [65]
Tab.4  NaCS providing as immobilized materials for “biomass” production in micro-cell-carriersa)
Fig.4  Growth and viability of CellMAC-encapsulated Chinese hamster ovary (CHO) cells. CellMAC-encapsulated CHO cell derivatives were cultivated for 44 d and microscopically analyzed at indicated times. (a) Cell growth; (b) cell viability (fluorescein diacetate staining); (c) dead cells (ethidium bromide staining). Adapted with permission from Weber et al. [67]. Copyright (2004) Elsevier B. V. & Co
Fig.5  SEM and scanning probe microscope (SPM) images of the microcapsules. (a) SEM image of a hollow microcapsule (×6.00 k, 5.0 kV); (b) SPM image of the dried microcapsules (area 6 mm); (c) the line analysis of (b), showing the thickness of the double layers of capsules shell, in which two arrows in the sides of picture were boundary of microcapsules; the arrow in the middle showed the minimum thickness of microcapsule. Adapted with permission from Xie et al. [75]. Copyright (2009) American Chemical Society
Fig.6  LSCM micrographs of the CA/NaCS-WSC microcapsules. Adapted with permission from Wu et al. [77]. Copyright (2016) Elsevier B. V. & Co
1 DKlemm, B Heublein, H PFink, ABohn. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393
https://doi.org/10.1002/anie.200460587
2 C SGoh, K T Tan, K T Lee, S Bhatia. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology, 2010, 101(13): 4834–4841
https://doi.org/10.1016/j.biortech.2009.08.080
3 BKoo, H Kim, YCho, K TLee, N SChoi, JCho. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angewandte Chemie International Edition, 2012, 51(35): 8762–8767
https://doi.org/10.1002/anie.201201568
4 CChang, L Zhang. Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 2011, 84(1): 40– 53
https://doi.org/10.1016/j.carbpol.2010.12.023
5 YKubo, O Nakajima, K. EPOgawa Patent, 2811544A1, 2014-12-10
6 L XZhang, Z H Liu, G L Cui, L Q Chen. Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43: 136–164
https://doi.org/10.1016/j.progpolymsci.2014.09.003
7 JKadokawa. Precision polysaccharide synthesis catalyzed by enzymes. Chemical Reviews, 2011, 111(7): 4308–4345
https://doi.org/10.1021/cr100285v
8 DAndrade, M H Mendonca, C V Helm, W Magalhaes, Gde Muniz, S GKestur. Assessment of nano cellulose from peach palm residue as potential food additive: Part II: Preliminary studies. Journal of Food Science and Technology-Mysore, 2015, 52(9): 5641–5650
https://doi.org/10.1007/s13197-014-1684-0
9 H CGomez, A Serpa, JVelasquez-Cock, PGanan, CCastro, LVelez, RZuluaga. Vegetable nanocellulose in food science: A review. Food Hydrocolloids, 2016, 57: 178–186
https://doi.org/10.1016/j.foodhyd.2016.01.023
10 L AGarcia-Zapateiro, CValencia, J MFranco. Formulation of lubricating greases from renewable basestocks and thickener agents: A rheological approach. Industrial Crops and Products, 2014, 54: 115–121
https://doi.org/10.1016/j.indcrop.2014.01.020
11 ZAl-Ibraheemi, M S Anuar, F S Taip, M Amin, S MTahir, A BMahdi. Deformation and mechanical characteristics of compacted binary mixtures of plastic (microcrystalline cellulose), elastic (sodium starch glycolate), and brittle (lactose monohydrate) pharmaceutical excipients. Particulate Science and Technology, 2013, 31(6): 561–567
https://doi.org/10.1080/02726351.2013.785451
12 JOjala, J A Sirvio, H Liimatainen. Nanoparticle emulsifiers based on bifunctionalized cellulose nanocrystals as marine diesel oil-water emulsion stabilizers. Chemical Engineering Journal, 2016, 288: 312–320
https://doi.org/10.1016/j.cej.2015.10.113
13 A AOun, J W Rhim. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 2016, 150: 187–200
https://doi.org/10.1016/j.carbpol.2016.05.020
14 XMa, M Lv, D PAnderson, P RChang. Natural polysaccharide composites based on modified cellulose spheres and plasticized chitosan matrix. Food Hydrocolloids, 2017, 66: 276–285
https://doi.org/10.1016/j.foodhyd.2016.11.038
15 R GSchweiger. Polysaccharide sulfates. I. Cellulose sulfate with a high degree of substitution. Carbohydrate Research, 1972, 21(2): 219–228
https://doi.org/10.1016/S0008-6215(00)82148-5
16 R JBrewer, K Tenn. US Patent, 4480091, 1984-10-30
17 T CUsher, N Patel, C GTele. US Patent, 5378828, 1995-01-03
18 KHettrich, W Wagenknecht, BVolkert, SFischer. New possibilities of the acetosulfation of cellulose. Macromolecular Symposia, 2008, 262(1): 162–169
https://doi.org/10.1002/masy.200850216
19 D BSparrow, W R Powers. US Patent, 2862922, 1958-12-02
20 S JYao. An improved process for the preparation of sodium cellulose sulphate. Chemical Engineering Journal, 2000, 78(2-3): 199–204
https://doi.org/10.1016/S1385-8947(00)00131-5
21 S JYao, D Q Lin, L. CN Fang Patent, 101274964B, 2010-11-03
22 S JYao. Verfahrenstechnische auslegung einer anlage fuer die natrium-cellulosesulfatherstellung zur immobiliserung von biokatalysatoren. Dissertation for the Doctoral Degree. Berlin: Technical University of Berlin, 1996, 57–90
23 R AAnderson, L J D Zaneveld, T C Usher. US Patent, 6063773, 2000-05-16
24 KOkajima, K Kamide, T. EPMatsui Patent, 0053473A1, 1981-11-25
25 TYoshida. Synthesis of polysaccharides having specific biological activities. Progress in Polymer Science, 2001, 26(3): 379–441
https://doi.org/10.1016/S0079-6700(00)00045-9
26 TYoshida, B W Kang, K Hattori, TMimura, YKaneko, HNakashima, MPremanathan, RAragaki, NYamamoto, TUryu. Anti-HIV activity of sulfonated arabinofuranan and xylofuranan. Carbohydrate Polymers, 2001, 42(2): 141–150
https://doi.org/10.1016/S0144-8617(00)00210-1
27 R AAnderson, K A Feathergill, X H Diao, M D Cooper, R Kirkpatrick, B CHerold, G FDoncel, C JChany, D PWaller, W FRencher, et al. Preclinical evaluation of sodium cellulose sulfate (Ushercell) as a contraceptive antimicrobial agent. Journal of Andrology, 2002, 23(3): 426–438
28 R AAnderson, K Feathergill, X HDiao, C IIChany, W FRencher, LZaneveld, D PWaller. Contraception by Ushercell (TM) (cellulose sulfate) in formulation: Duration of effect and dose effectiveness. Contraception, 2004, 70(5): 415–422
https://doi.org/10.1016/j.contraception.2004.05.014
29 L J DZaneveld, R AAnderson, T CUsher. US Patent, 7078392B2, 2006-07-18
30 ABaleta. Disappointment at failure of microbicide candidate. Lancet Infectious Diseases, 2008, 8(4): 221–221
https://doi.org/10.1016/S1473-3099(08)70060-4
31 WTao, C Richards, DHamer. Short communication—enhancement of HIV infection by cellulose sulfate. AIDS Research and Human Retroviruses, 2008, 24(7): 925–929
https://doi.org/10.1089/aid.2008.0043
32 VPirrone, S Passic, BWigdahl, FKrebs. Clinical failures of select polyanionic microbicide candidates may be predicted by in vitro enhancement of HIV-1 infection. Antiviral Research, 2009, 82(2): A65–A66
https://doi.org/10.1016/j.antiviral.2009.02.159
33 VPirrone, B Wigdahl, F CKrebs. The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antiviral Research, 2011, 90(3): 168–182
https://doi.org/10.1016/j.antiviral.2011.03.176
34 H KAgarwal, A Kumar, G FDoncel, KParang. Synthesis, antiviral and contraceptive activities of nucleoside-sodium cellulose sulfate acetate and succinate conjugates. Bioorganic & Medicinal Chemistry Letters, 2010, 20(23): 6993–6997
https://doi.org/10.1016/j.bmcl.2010.09.133
35 M JWang, Y L Xie, Q D Zheng, S J Yao. A novel, potential microflora-activated carrier for a colon-specific drug delivery system and its characteristics. Industrial & Engineering Chemistry Research, 2009, 48(11): 5276–5284
https://doi.org/10.1021/ie801295y
36 L YZhu, D Q Lin, S J Yao. Biodegradation of polyelectrolyte complex films composed of chitosan and sodium cellulose sulfate as the controllable release carrier. Carbohydrate Polymers, 2010, 82(2): 323–328
https://doi.org/10.1016/j.carbpol.2010.04.062
37 JRohowsky, K Heise, SFischer, KHettrich. Synthesis and characterization of novel cellulose ether sulfates. Carbohydrate Polymers, 2016, 142: 56–62
https://doi.org/10.1016/j.carbpol.2015.12.060
38 MGericke, T Liebert, THeinze. Interaction of ionic liquids with polysaccharides, 8-synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromolecular Bioscience, 2009, 9(4): 343–353
https://doi.org/10.1002/mabi.200800329
39 M JWang. Study on NaCS used for vegetable capsule and colon-targeted drug delivery capsule. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University, 2010, 29–38 (in Chinese)
40 KZhang, D Peschel, EBaeucker, TGroth, SFischer. Synthesis and characterisation of cellulose sulfates regarding the degrees of substitution, degrees of polymerisation and morphology. Carbohydrate Polymers, 2011, 83(4): 1659–1664
https://doi.org/10.1016/j.carbpol.2010.10.029
41 GChen, B Zhang, JZhao, HChen. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution. Carbohydrate Polymers, 2013, 95(1): 332–337
https://doi.org/10.1016/j.carbpol.2013.03.003
42 A AJohn, A P Subramanian, M V Vellayappan, A Balaji, S KJaganathan, HMohandas, TParamalinggam, ESupriyanto, MYusof. Review: Physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials. RSC Advances, 2015, 5(49): 39232–39244
https://doi.org/10.1039/C5RA03018H
43 L HMei, S J Yao. Cultivation and modelling of encapsulated Saccharomyces cerevisiae in NaCS-PDMDAAC polyelectrolyte complexes. Journal of Microencapsulation, 2002, 19(4): 397–405
https://doi.org/10.1080/02652040210141101
44 L HMei, S J Yao, D Q Lin, P L Cen, Z Q Zhu. Biocompatibility of NaCS and PDADMAC microcapsules with Bacillus thuringiensis. CIESC Journal, 1999, 50(5): 592–597
45 L HMei, D Q Lin, S J Yao, Z X Han. Study on immobilization of bacillus thuringiensis by microencapsules of NaCS and PDADMAC. Journal of Zhejiang University (Engineering Science), 2000, 34(6): 694–695 (in Chinese)
46 JZhang, S J Yao, Y X Guan. Preparation of macroporous sodium cellulose sulphate/poly(dimethyldiallylammonium chloride) capsules and their characteristics. Journal of Membrane Science, 2005, 255(1-2): 89–98
https://doi.org/10.1016/j.memsci.2005.01.025
47 HDautzenberg, U Schuldt, GGrasnick, PKarle, PMuller, MLohr, M Pelegrin, MPiechaczyk, K VRombs, W HGunzburg, et al.Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications. Annals of the New York Academy of Sciences, 1999, 875(1): 46–63
https://doi.org/10.1111/j.1749-6632.1999.tb08493.x
48 BSalmons, W H Gunzburg. Therapeutic application of cell microencapsulation in cancer. Berlin: Springer-Verlag Press, 2010, 92–103
49 LYildirimer, A M Seifalian. Three-dimensional biomaterial degradation—material choice, design and extrinsic factor considerations. Biotechnology Advances, 2014, 32(5): 984–999
https://doi.org/10.1016/j.biotechadv.2014.04.014
50 J MMacy, J R Farrand, L Montgomery. Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Applied and Environmental Microbiology, 1982, 44(6): 1428–1434
51 CRobert, A Bernalier-Donadille. The cellulolytic microflora of the human colon: Evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiology Ecology, 2003, 46(1): 81–89
https://doi.org/10.1016/S0168-6496(03)00207-1
52 Q XWu, M Z Li, S J Yao. Performances of NaCS-WSC protein drug microcapsules with different degree of substitution of NaCS using sodium polyphosphate as cross-linking agent. Cellulose (London, England), 2014, 21(3): 1897–1908
https://doi.org/10.1007/s10570-014-0209-3
53 L YZhu. Study on colon-specific drug delivery carrier based on chitosan and sodium cellulose sulfate. Dissertation for the Doctoral Degree.Hangzhou: Zhejiang University, 2011, 20–24 (in Chinese)
54 KZhang, E Brendler, S F TFischer. Raman investigation of sodium cellulose sulfate. Cellulose (London, England), 2010, 17(2): 427–435
https://doi.org/10.1007/s10570-009-9375-0
55 M JWang, S J Yao. Determination of molecular weight of sodium cellulose sulfate by low angle laser light scattering. Chinese Journal of Process Engineering, 2009, 9(6): 1159–1163 (in Chinese)
56 Q LZhang, D Q Lin, S J Yao. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydrate Polymers, 2015, 132: 311–322
https://doi.org/10.1016/j.carbpol.2015.06.041
57 L HMei, J T Yao, S J Yao. Immobilized culture of Bacillus subtilis in NACS-PDMDAAC microcapsules for production of new anti-thrombus enzyme. CIESC Journal, 2000, 51(6): 814–817
58 Z RZhang, Q D Zheng, S J Yao. Cultivation of encapsulated Monascus purpureus in NaCS-PDMDAAC capsules. Food and Fermentation Industries, 2003, 29(11): 1–4
59 L HMei, X Z Zhang, B Y Ai, Q Sheng, D QLin, S JYao, Z QZhu. Immobilized culture of Bacillus subtilis in SA/CS-CaCl2/PMCG microcapsule for production of nattokinase. CIESC Journal, 2004, 55(8): 1319–1323
60 L HMei, J L Yang, C H Zhong, D Q Lin, S J Yao. Cultivation of Brevibacterium flavum in new microcapsule system and production of glutamic acid. Journal of Zhejiang University (Engineering Science), 2005, 39(9): 1400–1403 (in Chinese)
61 Y YJi, S J Yao, J Zhang, Y XGuan, D QLin. Cultivation of encapsulated C.valida for producing lipase in macro-porous NaCS-PDMDAAC microcapsules. CIESC Journal, 2005, 56(11): 2162–2165
62 Y NZhao, G Chen, S JYao. Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochemical Engineering Journal, 2006, 32(2): 93–99
https://doi.org/10.1016/j.bej.2006.09.007
63 GChen, Y N Zhao, H Huang, S JYao. 1,3-Propanediol production from glycerol by Klebsiella pneumoniae encapsulated in NACS/PDMDAAC capsules. CIESC Journal, 2006, 57(12): 2933–2937
64 GChen, Y N Zhao, S J Yao, B S Fang. Production of 1,3-propanediol by co-culture of two immobilized microbes in series. Journal of Beijing University of Chemical Technology, 2007, 34(6): 640–644 (in Chinese)
65 Q LMa, D Q Lin, S J Yao. Immobilization of mixed bacteria by microcapsulation for hydrogen production—a trial of pseudo “Cell Factory”. Chinese Journal of Biotechnology, 2010, 26(10): 1444–1450
66 MLohr, P Muller, PKarle, JStange, SMitzner, RJesnowski, HNizze, BNebe, S Liebe, BSalmons, W HGunzburg. Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P450. Gene Therapy, 1998, 5(8): 1070–1078
https://doi.org/10.1038/sj.gt.3300671
67 WWeber, M Rinderknecht, MBaba, F Nde Glutz, DAubel, MFussenegger. CellMAC: A novel technology for encapsulation of mammalian cells in cellulose sulfate/pDADMAC capsules assembled on a transient alginate/Ca2+ scaffold. Journal of Biotechnology, 2004, 114(3): 315–326
https://doi.org/10.1016/j.jbiotec.2004.07.014
68 P BStiegler, V Stadlbauer, SSchaffellner, GHalwachs, CLackner, OHauser, FIberer, KTscheliessnigg. Cryopreservation of insulin-producing cells microencapsulated in sodium cellulose sulfate. Transplantation Proceedings, 2006, 38(9): 3026–3030
https://doi.org/10.1016/j.transproceed.2006.08.188
69 PStiegler, V Matzi, EPierer, OHauser, SSchaffellner, HRenner, JGreilberger, RAigner, AMaier, CLackner, FIberer, F MSmolle-Jüttner, KTscheliessnigg, VStadlbauer. Creation of a prevascularized site for cell transplantation in rats. Xenotransplantation, 2010, 17(5): 379–390
https://doi.org/10.1111/j.1399-3089.2010.00606.x
70 X HZeng, M K Danquah, C Zheng, RPotumarthi, X DChen, Y HLu. NaCS-PDMDAAC immobilized autotrophic cultivation of Chlorella sp. for wastewater nitrogen and phosphate removal. Chemical Engineering Journal, 2012, 187: 185–192
https://doi.org/10.1016/j.cej.2012.01.119
71 Q XWu, D Q Lin, S J Yao. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Marine Drugs, 2014, 12(12): 6236–6253
https://doi.org/10.3390/md12126236
72 Q XWu, S J Yao. Novel NaCS-CS-PPS microcapsules as a potential enzyme-triggered release carrier for highly-loading 5-ASA. Colloids and Surfaces. B, Biointerfaces, 2013, 109: 147–153
https://doi.org/10.1016/j.colsurfb.2013.03.035
73 Q XWu, Q L Zhang, D Q Lin, S J Yao. Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. International Journal of Pharmaceutics, 2013, 455(1-2): 124–131
https://doi.org/10.1016/j.ijpharm.2013.07.048
74 Y LXie, M J Wang, S J Yao. Layer-by-layer self-assembly complex membrane composed of sodium cellulose sulfate-chitosan. CIESC Journal, 2008, 59(11): 2910–2915
75 Y LXie, M J Wang, S J Yao. Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir, 2009, 25(16): 8999–9005
https://doi.org/10.1021/la9014338
76 SSugiura, M Nakajima, JTong, HNabetani, MSeki. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. Journal of Colloid and Interface Science, 2000, 227(1): 95–103
https://doi.org/10.1006/jcis.2000.6843
77 Q XWu, D Q Lin, S J Yao. Fabrication and formation studies on single-walled CA/NaCS-WSC microcapsules. Materials Science & Engineering C-Materials for Biological Applications, 2016, 59: 909–915
https://doi.org/10.1016/j.msec.2015.10.090
[1] Jing YANG,Juan LV,Bin GAO,Li ZHANG,Dazhi YANG,Changcan SHI,Jintang GUO,Wenzhong LI,Yakai FENG. Modification of polycarbonateurethane surface with poly(ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion[J]. Front. Chem. Sci. Eng., 2014, 8(2): 188-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed