|
|
Modification of polycarbonateurethane surface with poly(ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion |
Jing YANG1,Juan LV1,Bin GAO1,Li ZHANG1,Dazhi YANG1,Changcan SHI1,Jintang GUO1,2,Wenzhong LI4,*( ),Yakai FENG1,2,3,*( ) |
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 2. Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China 3. Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China 4. University of Rostock, Department of Cardiac Surgery, Reference & Translation Center for Cardiac Stem Cell Therapy, Schillingallee 69, D-18057 Rostock, Germany |
|
|
Abstract Poly(ethylene glycol) monoacrylate (PEGMA) is grafted onto polycarbonateurethane (PCU) surface via ultraviolet initiated photopolymerization. The hydroxyl groups of poly(PEGMA) on the surface react with one NCO group of isophorone diisocyanate (IPDI) and another NCO group of IPDI is then hydrolyzed to form amino terminal group, which is further grafted with phosphorylcholine glyceraldehyde to establish a biocompatible hydrophilic structure on the surface. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm the successful grafting of both PEG and phosphorylcholine functional groups on the surface. The decrease of the water contact angle for the modified film is caused by synergic effect of PEG and phosphorylcholine, which both have the high hydrophilicity. Furthermore, the number of platelets adhered is relative low on the synergetically modified PCU film compared with the PCU film modified only by poly(PEGMA). Our synergic modification method using both PEG and phosphorylcholine may be applied in surface modification of blood-contacting biomaterials and some relevant devices.
|
Keywords
poly(ethylene glycol) monoacrylate
phosphorylcholine
polycarbonateurethane
surface modification
anti-platelet adhesion
biomaterials
|
Corresponding Author(s):
Wenzhong LI
|
Issue Date: 22 May 2014
|
|
1 |
KushwahaM, AndersonJ M, BosworthC A, AndukuriA, MinorW P, LancasterJ R J Jr, AndersonP G, BrottB C, JunH W. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials, 2010, 31(7): 1502–1508 doi: 10.1016/j.biomaterials.2009.10.051
|
2 |
OkoshiT, SoldaniG, GoddardM, GallettiP M. Very small diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting. Journal of Thoracic and Cardiovascular Surgery, 1993, 105(5): 791–795
|
3 |
IsenbergB C, WilliamsC, TranquilloR T. Small-diameter artificial arteries engineered in vitro. Circulation Research, 2006, 98(1): 25–35 doi: 10.1161/01.RES.0000196867.12470.84
|
4 |
WangH Y, FengY K, BehlM, LendleinA, ZhaoH Y, XiaoR F, LuJ, ZhangL, GuoJ T. Hemocompatible PU/gelatin-heparin nanofibrous scaffolds as potential artificial blood vessels by bi-layer electrospinning technique. Frontiers of Chemical Science and Engineering, 2011, 5(3): 392–400 doi: 10.1007/s11705-011-1202-0
|
5 |
FengY K, MengF R, XiaoR F, ZhaoH Y, GuoJ T. Electrospinning of polycarbonate urethane biomaterials. Frontiers of Chemical Science and Engineering, 2011, 5(1): 11–18 doi: 10.1007/s11705-010-1011-x
|
6 |
FengY K, XueY, GuoJ T, ChengL, JiaoL C, ZhangL, YueJ L. Synthesis and characterization of poly(carbonate urethane) networks with shape-memory properties. Journal of Applied Polymer Science, 2009, 112(1): 473–478 doi: 10.1002/app.29426
|
7 |
BehlM, RidderU, FengY K, KelchS, LendleinA. Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter, 2009, 5(3): 676–684 doi: 10.1039/b810583a
|
8 |
GuoJ T, YinJ W, FengY K. Synthesis and characterization of HDI/MDI-polycarbonate urethanes. Transaction of Tianjin University, 2010, 16(5): 317–321 doi: 10.1007/s12209-010-1506-z
|
9 |
HsuS H, KaoY C, LinZ C. Enhanced biocompatibility in biostable poly(carbonate)urethane. Macromolecular Bioscience, 2004, 19, 4(4): 464–470
|
10 |
SeifalianA M, SalacinskiH J, TiwariA, EdwardsA, BowaldS, HamiltonG. In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials, 2003, 24(14): 2549–2557 doi: 10.1016/S0142-9612(02)00608-7
|
11 |
ChandyT, VanH J, NettekovenW, JohnsonJ. Long-term in vitro stability assessment of polycarbonate urethane micro catheters: resistance to oxidation and stress cracking. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 89(2): 314–324
|
12 |
JohnB J, FurukawaM. Enhanced mechanical properties of polyamide 6 fibers coated with a polyurethane thin film. Polymer Engineering and Science, 2009, 49(10): 1970–1978 doi: 10.1002/pen.21432
|
13 |
AjiliS H, EbrahimiN G, KhorasaniM T. Study on thermoplastic polyurethane/polypropylene (TPU/PP) blend as a blood bag material. Journal of Applied Polymer Science, 2003, 89(9): 2496–2501 doi: 10.1002/app.12180
|
14 |
FengY K, ZhangS F, WangH Y, ZhaoH Y, LuJ, GuoJ T, BehlM, LendleinA. Drug release from biodegradable polyesterurethanes with shape-memory effect. Journal of Controlled Release, 2011, 152(Suppl 1): e20–e21 doi: 10.1016/j.jconrel.2011.08.097
|
15 |
WeiY, JiY, XiaoL L, LinQ K, XuJ P, RenK F, JiJ. Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials, 2013, 34(11): 2588–2599 doi: 10.1016/j.biomaterials.2012.12.036
|
16 |
GuoJ T, FengY K, YeY Q, ZhaoH Y. Construction of hemocompatible polycarbonate urethane with sulfoammonium zwitterionic polyethylene glycol. Journal of Applied Polymer Science, 2011, 122(2): 1084–1091 doi: 10.1002/app.34214
|
17 |
WuZ Q, ChenH, HuangH, ZhaoT L, LiuX L, LiD, YuQ. A facile approach to modify polyurethane surfaces for biomaterial applications. Macromolecular Bioscience, 2009, 9(12): 1165–1168 doi: 10.1002/mabi.200900221
|
18 |
LiJ, LinF, LiL D, LiJ, LiuS. Surface engineering of poly(ethylene terephthalate) for durable hemocompatibility via a surface interpenetrating network technique. Macromolecular Chemistry and Physics, 2012, 213(20): 2120–2129 doi: 10.1002/macp.201200251
|
19 |
MelA D, JellG, StevensM M, SeifalianA M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules, 2008, 9(11): 2969–2979 doi: 10.1021/bm800681k
|
20 |
ZhuH G, JiJ, ShenJ C. Surface engineering of poly(DL-lactic acid) by entrapment of biomacromolecules. Macromolecular Rapid Communications, 2002, 23(14): 819–823 doi: 10.1002/1521-3927(20021001)23:14<819::AID-MARC819>3.0.CO;2-9
|
21 |
KhanM, FengY K, YangD Z, ZhouW, TianH, HanY, ZhangL, YuanW J, ZhangJ, GuoJ T, ZhangW C. Biomimetic design of amphiphilic polycations and surface grafting onto polycarbonate urethane film as effective antibacterial agents with controlled hemocompatibility. Journal of Polymer Science. Part A, Polymer Chemistry, 2013, 51(15): 3166–3176 doi: 10.1002/pola.26703
|
22 |
GonçalvesaS, LeirósaA, KootenbT V, DouradoaF, RodriguesL R. Physicochemical and biological evaluation of poly(ethylene glycol) methacrylate grafted onto poly(dimethyl siloxane) surfaces for prosthetic devices. Colloids and Surfaces. B, Biointerfaces, 2013, 109(1): 228–235 doi: 10.1016/j.colsurfb.2013.03.050
|
23 |
JiJ, FengL X, QiuY X, YuX J. Stearyl poly(ethylene oxide) grafted surface for preferential adsorption of part 2.The effect of the molecule mobility onto protein adsorption. Polymer, 2000, 41(10): 3713–3718 doi: 10.1016/S0032-3861(99)00556-X
|
24 |
SeongbongJ, KinamP. Surface modification using silanated poly(ethylene glycol)s. Biomaterials, 2000, 21(6): 605–616
|
25 |
WangH Y, FengY K, FangZ C, YuanW J, KhanM. Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Materials Science and Engineering C, 2012, 32(8): 2306–2315 doi: 10.1016/j.msec.2012.07.001
|
26 |
ZhaoH Y, FengY K, GuoJ T. Grafting of poly(ethylene glycol) monoacrylate onto polycarbonateurethane surfaces by ultraviolet radiation grafting polymerization to control hydrophilicity. Journal of Applied Polymer Science, 2011, 119(6): 3717–3727 doi: 10.1002/app.32997
|
27 |
YuanW J, FengY K, WangH Y, YangD Z, AnB, ZhangW C, KhanM, GuoJ T. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Materials Science and Engineering: C, 2013, 33(7): 3644–3651
|
28 |
PerttuaE K, SzokaF C. Zwitterionic sulfobetaine lipids that form vesicles with salt-dependent thermotropic properties. Chemical Communications, 2011, 47(47): 12613–12615 doi: 10.1039/c1cc15804j
|
29 |
FengY K, YangD Z, BehlM, LendleinA, ZhaoH Y, GuoJ T. The influence of zwitterionic phospholipid brushes grafted via UV-initiated or SI-ATR polymerization on the hemocompatibility of polycarbonateurethane. Macromolecular Symposia, 2011, 309–310(1): 6–15 doi: 10.1002/masy.201100034
|
30 |
FengY K, YangD Z, ZhaoH Y, GuoJ T, ChenQ L, LiuJ S. Grafting sulfoammonium zwitterionic brushes onto polycarbonateurethane surface to improve hemocompatibility. Advanced Materials Research, 2011, 306–307: 1631–1634 doi: 10.4028/www.scientific.net/AMR.306-307.1631
|
31 |
ShihY J, LaiC J, KungH H, JiangS Y. Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood. Advanced Functional Materials, 2013, 23(9): 1100–1110 doi: 10.1002/adfm.201201386
|
32 |
ShihY J, ChangY. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir, 2010, 26(22): 17286–17294 doi: 10.1021/la103186y
|
33 |
WangM, YuanJ, HuangX, CaiX, LiL, ShenJ. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids and Surfaces. B, Biointerfaces, 2013, 103: 52–58 doi: 10.1016/j.colsurfb.2012.10.025
|
34 |
LiuG Y, HuX F, ChenC J, JiJ. Construct biomimetic giant vesicles via self-assembly of poly(2-methacryloyloxyethyl phosphorylcholine)- block-poly (D,L- lactide). Journal of Applied Polymer Science, 2010, 118(6): 3197–3202 doi: 10.1002/app.32758
|
35 |
GaoB, FengY K, LuJ, ZhangL, ZhaoM, ShiC C, KhanM, GuoJ T. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion. Materials Science and Engineering C, 2013, 33(5): 2871–2878 doi: 10.1016/j.msec.2013.03.007
|
36 |
LuJ, FengY K, GaoB, GuoJ T. Preparation and characterization of phosphorylcholine glyceraldehyde grafted polycarbonateurethane films. Journal of Polymer Research, 2012, 19(9): 9959–9969 doi: 10.1007/s10965-012-9959-5
|
37 |
GaoW, FengY K, LuJ, KhanM, GuoJ T. Biomimetic surface modification of polycarbonateurethane film via phosphorylcholine-graft for resisting platelet adhesion. Macromolecular Research, 2012, 20(10): 1063–1069 doi: 10.1007/s13233-012-0152-9
|
38 |
TanM Q, FengY K, WangH Y, ZhangL, KhanM, GuoJ T, ChenQ L, LiuJ S. Immobilized bioactive agents onto polyurethane surface with heparin and phosphorylcholine group. Macromolecular Research, 2013, 21(5): 541–549 doi: 10.1007/s13233-013-1028-3
|
39 |
LuJ, FengY K, GaoB, GuoJ T. Grafting of a novel phosphorylcholine-containing vinyl monomer onto polycarbonateurethane surfaces by ultraviolet radiation grafting polymerization. Macromolecular Research, 2012, 20(7): 693–702 doi: 10.1007/s13233-012-0104-4
|
40 |
AlbrechtW, SeifertB, WeigelT, SchossigM, HolländerA, GrothT, HilkeR. Amination of poly(ether imide) membranes using di- and multivalent amines. Macromolecular Chemistry and Physics, 2003, 204(3): 510–521 doi: 10.1002/macp.200390016
|
41 |
JiangH, WangX B, LiC Y, LiJ S, XuF J, MaoC, YangW T, ShenJ. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Langmuir, 2011, 27(18): 11575–11581 doi: 10.1021/la202101q
|
42 |
LiD, ChenH, McClungW G, BrashJ L. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clotlysis. Acta Biomaterialia, 2009, 5(6): 1864–1871 doi: 10.1016/j.actbio.2009.03.001
|
43 |
FengY K, ZhaoH Y, BehlM, LendleinA, GuoJ T, YangD Z. Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility. Journal of Materials Science. Materials in Medicine, 2013, 24(1): 61–70 doi: 10.1007/s10856-012-4685-4
|
44 |
LomölderR, PlogmannF, SpeierP. Selectivity of isophorone diisocyanate in the urethane reaction influence of temperature, catalysis, and reaction partners. Journal of Coatings Technology, 1997, 69(868): 51–57 doi: 10.1007/BF02696250
|
45 |
MiyazawaK, WinnikF M, MiyazawaK, WinnikF O M. Solution properties of phosphorylcholine-based hydrophobically modified polybetaines in water and mixed solvents. Macromolecules, 2002, 35(25): 9536–9544 doi: 10.1021/ma021129r
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|