Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (4) : 772-779    https://doi.org/10.1007/s11705-018-1731-x
RESEARCH ARTICLE
Efficient production of D-1,2,4-butanetriol from D-xylose by engineered Escherichia coli whole-cell biocatalysts
Shewei Hu1, Qian Gao1, Xin Wang1, Jianming Yang2, Nana Xu1, Kequan Chen1(), Sheng Xu1, Pingkai Ouyang1
1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
2. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
 Download: PDF(402 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We have developed a whole-cell bioconversion system for the production of D-1,2,4-butanetriol (BT) from renewable biomass. A plasmid pETduet-xylB-yjhG-T7-adhP-T7-mdlC was constructed and transformed to Escherichia coli BL21(DE3) to obtain the whole cells of E. coli BL21-XYMA capable of bioconversion D-xylose to BT. Then, the factors including carbon sources, nitrogen sources, metal ions, and culture conditions (pH, temperature, IPTG) were identified, and their effects on the whole-cell activity for BT production were investigated. To obtain the highest whole-cell activity, the optimal cultivation parameters are: 15 g·L1 yeast extract, 5 g·L1 sucrose, 3 g·L1 KH2PO4, 5 g·L1 NaCl, 3 g·L1 NH4Cl, 0.25 g·L1 MgSO4∙7H2O and 1 mL·L1 the mixture of trace elements. With the optimized whole cells of E. coli BL21-XYMA, 60 g·L1 of xylose was converted to 28 g·L1 BT with a molar yield of 66.0%, which is higher than those reported in the biotechnological system.

Keywords D-1,2,4-butanetriol      whole-cell bioconversion      carbon source      nitrogen sources      metal ions      culture conditions     
Corresponding Author(s): Kequan Chen   
Just Accepted Date: 10 April 2018   Online First Date: 31 August 2018    Issue Date: 03 January 2019
 Cite this article:   
Shewei Hu,Qian Gao,Xin Wang, et al. Efficient production of D-1,2,4-butanetriol from D-xylose by engineered Escherichia coli whole-cell biocatalysts[J]. Front. Chem. Sci. Eng., 2018, 12(4): 772-779.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1731-x
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I4/772
Strains, plasmid and primers Description Source
E. coli Trans T1 Used for general gene cloning TransGen
E. coli BL21(DE3) Used as host strain TransGen
BL21-XYMA E.coliBL21(DE3) harboring plasmid pETduet-xylB-yjhG-T7-adhP-T7-mdlC This study
Primer 1 EcoRI-T7-adhp-F CCGGAATTCTAATACGACTCACTATAGGGGAATTGTG Springen
Primer 2 HindIII-adhp-R CCCAagctTTTAGTGACGGAAATCAATC Springen
Primer 3 mdlC-T7-XhoI CCGCTCGAGCCTTATGCGACTCCTGCATTAGG Springen
Primer 4 mdlC-AvrII-R GCAGCCTAGGCCGAGCTCTTATTTAACCGGA Springen
Tab.1  Strains, plasmid and primers used in this study
Fig.1  The plasmid map of pETduet-xylB-yjhG-T7-adhP-T7-mdlC
Strains, plasmid and primers Description Source
E. coli Trans T1 Used for general gene cloning TransGen
E. coli BL21(DE3) Used as host strain TransGen
BL21-XYMA E.coliBL21(DE3) harboring plasmid pETduet-xylB-yjhG-T7-adhP-T7-mdlC This study
Primer 1 EcoRI-T7-adhp-F CCGGAATTCTAATACGACTCACTATAGGGGAATTGTG Springen
Primer 2 HindIII-adhp-R CCCAagctTTTAGTGACGGAAATCAATC Springen
Primer 3 mdlC-T7-XhoI CCGCTCGAGCCTTATGCGACTCCTGCATTAGG Springen
Primer 4 mdlC-AvrII-R GCAGCCTAGGCCGAGCTCTTATTTAACCGGA Springen
Tab.2  Strains, plasmid and primers used in this study
Fig.2  The plasmid map of pETduet-T7-mdlc-T7-xylb-T7-adhp-T7-yjhg
Fig.3  The effects of carbon source on the whole-cell activity. (a) different carbon sources (the glucose was used as a control group), and (b) different sucrose concentrations (5 g·L-1 sucrose was used as a control group)
Fig.4  The effects of nitrogen sources on the whole-cell activity. (a) different organic nitrogen sources (peptone was used as the control group), and (b) yeast extract concentration (10 g·L-1 yeast extract was used as the control group)
Fig.5  The effects of metal ions on the whole-cell activity. (a) different Mg2+ concentrations, and (b) the mixture of trace elements
Fig.6  The effects of culture conditions on the whole-cell activity. (a) the initial pH, (b) temperature, (c) IPTG concentration, and (d) induction time
Fig.7  The production of BT by the whole cells of BL21-XYMA. (a) The effect of temperature, (b) the effect of the concentration of whole cells, and (c) using 60 g·L-1 xylose
1 VSànchez Nogué, KKarhumaa. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology Letters, 2015, 37(4): 761–772
https://doi.org/10.1007/s10529-014-1756-2 pmid: 25522734
2 KYamada-Onodera, A Norimoto, NKawada, RFuruya, HYamamoto, YTani. Production of optically active 1,2,4-butanetriol from corresponding racemate by Microbial stereoinversion. Journal of Bioscience and Bioengineering, 2007, 103(5): 494–496
https://doi.org/10.1263/jbb.103.494 pmid: 17609168
3 WNiu, M N Molefe, J W Frost. Microbial synthesis of the energetic material 1,2,4-butanetriol. Abstracts of Papers of the American Chemical Society, 2004, 227: U298–U298
4 YXu, L Qian, A VPontsler, T MMcIntyre, G DPrestwich. Synthesis of difluoromethyl substituted lysophosphatidic acid analogues. Tetrahedron, 2004, 60(1): 43–49
https://doi.org/10.1016/j.tet.2003.11.001
5 K N GValdehuesa, HLiu, K R M Ramos, S J Park, G M Nisola, W K Lee, W J Chung. Direct bioconversion of D-xylose to 1,2,4-butanetriol in an engineered Escherichia coli. Process Biochemistry, 2014, 49(1): 25–32
https://doi.org/10.1016/j.procbio.2013.10.002
6 NZhang, J Wang, YZhang, HGao. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli. Enzyme and Microbial Technology, 2016, 93-94: 51–58
https://doi.org/10.1016/j.enzmictec.2016.07.007 pmid: 27702485
7 YCao, W Niu, JGuo, MXian, H Liu. Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass. Scientific Reports, 2015, 5(1): 18149
https://doi.org/10.1038/srep18149 pmid: 26670289
8 TIshige, K Honda, SShimizu. Whole organism biocatalysis. Current Opinion in Chemical Biology, 2005, 9(2): 174–180
https://doi.org/10.1016/j.cbpa.2005.02.001 pmid: 15811802
9 U TBornscheuer, G WHuisman, R JKazlauskas, SLutz, J C Moore, K Robins. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397): 185–194
https://doi.org/10.1038/nature11117 pmid: 22575958
10 MBreuer, K Ditrich, THabicher, BHauer, MKesseler, RStürmer, TZelinski. Industrial methods for the production of optically active intermediates. Angewandte Chemie International Edition, 2004, 43(7): 788–824
https://doi.org/10.1002/anie.200300599 pmid: 14767950
11 TEndo, S Koizumi. Microbial conversion with cofactor regeneration using genetically engineered bacteria. Advanced Synthesis & Catalysis, 2001, 343(6–7): 521–526
https://doi.org/10.1002/1615-4169(200108)343:6/7<521::AID-ADSC521>3.0.CO;2-5
12 JOgawa, S Shimizu. Industrial microbial enzymes: Their discovery by screening and use in large-scale production of useful chemicals in Japan. Current Opinion in Biotechnology, 2002, 13(4): 367–375
https://doi.org/10.1016/S0958-1669(02)00331-2 pmid: 12323360
13 S YLee. High cell-density culture of Escherichia coli. Trends in Biotechnology, 1996, 14(3): 98–105
https://doi.org/10.1016/0167-7799(96)80930-9 pmid: 8867291
14 NChen, J Huang, Z BFeng, LYu, Q Y Xu, T Y Wen. Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli. Applied Biochemistry and Biotechnology, 2009, 158(3): 595–604
https://doi.org/10.1007/s12010-008-8385-y pmid: 18931947
15 AAmrane, Y Prigent. Lactic acid production from lactose in batch culture: analysis of the data with the help of a mathematical model; relevance for nitrogen source and preculture assessment. Applied Microbiology and Biotechnology, 1994, 40(5): 644–649
https://doi.org/10.1007/BF00173322
16 H JSon, M S Heo, Y G Kim, S J Lee. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnology and Applied Biochemistry, 2001, 33(1): 1–5
https://doi.org/10.1042/BA20000065 pmid: 11171030
17 WRaza, X Yang, HWu, QHuang, YXu, Q Shen. Evaluation of metal ions (Zn2+, Fe3+ and Mg2+) effect on the production of fusaricidin-type antifungal compounds by Paenibacillus polymyxa SQR-21. Bioresource Technology, 2010, 101(23): 9264–9271
https://doi.org/10.1016/j.biortech.2010.07.052 pmid: 20685115
18 YJiang, W Liu, TCheng, YCao, R Zhang, MXian. Characterization of D-xylonate dehydratase YjhG from Escherichia coli. Bioengineered, 2015, 6(4): 227–232
https://doi.org/10.1080/21655979.2015.1040208 pmid: 26083940
19 P GJones, R A VanBogelen, F C Neidhardt. Induction of proteins in response to low temperature in Escherichia coli. Journal of Bacteriology, 1987, 169(5): 2092–2095
https://doi.org/10.1128/jb.169.5.2092-2095.1987 pmid: 3553157
20 LSun, F Yang, HSun, TZhu, X Li, YLi, ZXu, Y Zhang. Synthetic pathway optimization for improved 1,2,4-butanetriol production. Journal of Industrial Microbiology & Biotechnology, 2016, 43(1): 67–78
https://doi.org/10.1007/s10295-015-1693-7 pmid: 26498325
21 XWang, N Xu, SHu, JYang, Q Gao, SXu, KChen, P Ouyang. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli. Bioresource Technology, 2018, 250: 406–412
https://doi.org/10.1016/j.biortech.2017.11.062 pmid: 29195152
[1] Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1124-1135.
[2] Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method[J]. Front. Chem. Sci. Eng., 2017, 11(4): 545-553.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed