Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (4) : 505-511    https://doi.org/10.1007/s11783-011-0318-2
RESEARCH ARTICLE
Application of quantum chemical descriptors into quantitative structure-property relationship models for prediction of the photolysis half-life of PCBs in water
Yueping BAO1, Qiuying HUANG2, Wenlong WANG1, Jiangjie XU1, Fan JIANG1, Chenghong FENG1()
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; 2. Department of Chemical Engineering, Henan Polytechnic Institute, Nanyang 473009, China
 Download: PDF(120 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quantitative structure-property relationship (QSPR) models were developed for prediction of photolysis half-life (t1/2) of polychlorinated biphenyls (PCBs) in water under ultraviolet (UV) radiation. Quantum chemical descriptors computed by the PM3 Hamiltonian software were used as independent variables. The cross-validated Qcum2 value for the optimal QSPR model is 0.966, indicating good prediction capability for lg t1/2 values of PCBs in water. The QSPR results show that the largest negative atomic charge on a carbon atom (QC-) and the standard heat of formation (ΔHf) have a dominant effect on t1/2 values of PCBs. Higher QC- values or lower ΔHf values of the PCBs leads to higher lg t1/2 values. In addition, the lg t1/2 values of PCBs increase with the increase in the energy of the highest occupied molecular orbital values. Increasing the largest positive atomic charge on a chlorine atom and the most positive net atomic charge on a hydrogen atom in PCBs leads to the decrease of lg t1/2 values.

Keywords photolysis      polychlorinated biphenyls (PCBs)      quantitative structure-property relationships (QSPRs)      quantum chemical descriptors     
Corresponding Author(s): FENG Chenghong,Email:fengchenghong@hotmail.com   
Issue Date: 05 December 2011
 Cite this article:   
Yueping BAO,Qiuying HUANG,Wenlong WANG, et al. Application of quantum chemical descriptors into quantitative structure-property relationship models for prediction of the photolysis half-life of PCBs in water[J]. Front Envir Sci Eng Chin, 2011, 5(4): 505-511.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0318-2
https://academic.hep.com.cn/fese/EN/Y2011/V5/I4/505
No.compoundslg t1/2 (observed)t1/2 (observed)a)lg t1/2 (predicted)Diff.b)SE-Pred.c)t1/2 (predicted)
1PCB 1 (2-)1.3622.81.300.06±0.0420.1
2PCB 10 (2,6-)0.959.01.01-0.06±0.0410.3
3PCB 12 (3,4-)2.08120.62.12-0.04±0.04130.9
4PCB 14 (3,5-)2.11127.82.100.01±0.05126.2
5PCB 21 (2,3,4-)1.3622.81.340.02±0.0521.8
6PCB 29 (2,4,5-)1.6443.81.630.01±0.0342.8
7PCB 30 (2,4,6-)1.4528.21.440.01±0.0327.9
8PCB52 (2,2',5,5′-)1.79±0.0562.1
9PCB 28 (2,4,4'-)2.18±0.07151.4
10PCB 31 (2,4',5-)1.63±0.0242.2
11PCB 101 (2,2',4,5,5′-)1.65±0.0544.4
12PCB 105 (2,3,3′,4,4'-)1.79±0.0461.2
13PCB 118 (2,3′,4,4',5-)2.11±0.05129.1
14PCB 138 (2,2',3,4,4',5′-)1.77±0.0758.5
15PCB 153 (2,2',4,4',5,5′-)2.05±0.04110.9
16PCB 156 (2,3,3′,4,4',5-)1.90±0.0679.4
17PCB 180 (2,2',3,4,4',5,5′-)1.82±0.0765.5
Tab.1  Photolysis half-life (, min) of the PCBs in water
symbolsdescription
Mwmolecular weight
ΔHfstandard heat of formation
TEtotal energy
EEelectronic energy
CCRcore-core repulsion energy
EHOMOenergy of the highest occupied molecular orbital
EHOMO-1energy of the second highest occupied molecular orbital
ELUMOenergy of the lowest unoccupied molecular orbital
ELUMO+1energy of the second lowest unoccupied molecular orbital
QCl+largest positive atomic charge on a chlorine atom
QH+most positive net atomic charges on a hydrogen atom
QC-largest negative atomic charge on a carbon atom
μdipole moment
aaverage molecular polarizability
Tab.2  List of molecular structural descriptors of PCBs
No.QC-ΔHfQCl+ELUMO+1EHOMOQH+
1-0.15049.6070.090-9.587-8.8470.142
2-0.15049.7550.098-9.499-9.0010.139
3-0.13835.2390.094-9.628-8.9230.127
4-0.11134.3580.073-9.434-9.1600.130
5-0.14932.0510.118-9.369-9.1890.121
6-0.14638.3180.105-9.604-8.9090.141
7-0.14943.6460.107-9.644-8.9760.139
8-0.13025.4090.088-9.280-9.2100.126
9-0.14036.8660.102-9.823-8.8410.144
10-0.13936.7440.100-9.525-8.9220.144
11-0.14219.7290.104-9.301-9.2450.133
12-0.13524.4380.126-9.543-8.9730.154
13-0.13423.6220.107-9.542-8.9810.141
14-0.15215.3200.123-9.447-9.2800.133
15-0.13420.2710.109-9.487-9.0460.143
16-0.14219.3850.131-9.507-9.0240.140
17-0.14210.1060.129-9.337-9.3070.133
Tab.3  Selected quantum chemical descriptors for the PCBs used in this study
kRX(cum)2RX(adj.)(cum)2RY(cum)2RY(adj.)(cum)2EigQcum2RpSE
10.4420.1970.7070.6482.6530.4670.996<0.00010.055
20.7540.4460.9400.9101.8700.838
30.9530.8130.9910.9821.1970.966
Tab.4  Model fitting results for Model 1
variablesVIPW* [1]W* [2]W* [3]Coeff. (a)a)Coeff. (b)b)
QC-1.3110.6280.296-0.1780.4391.284 × 10
ΔHf1.192-0.554-0.343-0.707-0.597-3.408 × 10-2
QCl+0.951-0.424-0.2890.519-0.248-7.202
ELUMO+10.911-0.096-0.794-0.451-0.451-1.779
EHOMO0.754-0.0900.5700.2340.2146.914 × 10-1
QH+0.746-0.3160.075-0.377-0.232-1.188 × 10
constants3.7513.751-3.681
Tab.5  PLS weights (* [] and * []) and s for the molecular structural descriptors included in Model 1
QC-ΔHfQCl+ELUMO+1EHOMOQH+
QC-1.000
ΔHf-0.5001.000
QCl+-0.781-0.0861.000
ELUMO+10.306-0.4030.0131.000
EHOMO-0.4610.609-0.041-0.877*1.000
QH+-0.3280.816-0.146-0.6150.7221.000
Tab.6  Correlation coefficients between the variables in Table 5 (<0.01)
1 Toyoshiba H, Walker N J, Bailer A J, Portier C J. Evaluation of toxic equivalency factors for induction of cytochromes P450 CYP1A1 and CYP1A2 enzyme activity by dioxin-like compounds. Toxicology and Applied Pharmacology , 2004, 194(2): 156–168
doi: 10.1016/j.taap.2003.09.015 pmid:14736496
2 Gray L E Jr. Xenoendocrine disrupters: laboratory studies on male reproductive effects. Toxicology Letters , 1998, 102-103(1-2): 331–335
doi: 10.1016/S0378-4274(98)00327-0 pmid:10022274
3 Baker V A. Endocrine disrupters—testing strategies to assess human hazard. Toxicology In Vitro , 2001, 15(4-5): 413–419
doi: 10.1016/S0887-2333(01)00045-5 pmid:11566572
4 Eljarrat E, Caixach J, Rivera J, de Torres M, Ginebreda A. Toxic potency assessment of non- and mono-ortho PCBs, PCDDs, PCDFs, and PAHs in northwest Mediterranean sediments (Catalonia, Spain). Environmental Science &amp; Technology , 2001, 35(18): 3589–3594
doi: 10.1021/es010041a pmid:11783632
5 Helm P A, Bidleman T F. Current combustion-related sources contribute to polychlorinated naphthalene and dioxin-like polychlorinated biphenyl levels and profiles in air in Toronto, Canada. Environmental Science &amp; Technology , 2003, 37(6): 1075–1082
doi: 10.1021/es020860a pmid:12680657
6 Lin P, Chang Y C, Chen C H, Yang W J, Cheng Y H, Chang L W. A comparative study on the effects of 2,3,7,8,-tetrachlorodibenzo-p-dioxin polychlorinated biphenyl126 and estrogen in human bronchial epithelial cells. Toxicology and Applied Pharmacology , 2004, 195(1): 83–91
doi: 10.1016/j.taap.2003.11.001 pmid:14962508
7 Niu J F, Long X X, Shi S Q. Quantitative structure-activity relationships for prediction of the toxicity of hydroxylated and quinoid PCB metabolites. Journal of Molecular Modeling , 2007, 13(1): 163–169
doi: 10.1007/s00894-006-0153-8 pmid:16969666
8 Tian F L, Chen J W, Qiao X L, Cai X Y, Yang P, Wang Z, Wang D G. Source identification of PCDD/Fs and PCBs in pine (Cedrus deodara) needles: a case study in Dalian, China. Atmospheric Environment , 2008, 42(19): 4769–4777
doi: 10.1016/j.atmosenv.2008.01.043
9 Iwata H, Watanabe M, Okajima Y, Tanabe S, Amano M, Miyazaki N, Petrov E A. Toxicokinetics of PCDD, PCDF, and coplanar PCB congeners in Baikal seals, Pusa sibirica: age-related accumulation, maternal transfer, and hepatic sequestration. Environmental Science &amp; Technology , 2004, 38(13): 3505–3513
doi: 10.1021/es035461+ pmid:15296299
10 Niu J F, Huang L P, Chen J W, Yu G, Schramm K W. Quantitative structure-property relationships on photolysis of PCDD/Fs adsorbed to spruce (Picea abies (L.) Karst.) needle surfaces under sunlight irradiation. Chemosphere , 2005, 58(7): 917–924
doi: 10.1016/j.chemosphere.2004.09.051 pmid:15639263
11 Niu J F, Shen Z Y, Yang Z F, Long X X, Yu G. Quantitative structure-property relationships on photodegradation of polybrominated diphenyl ethers. Chemosphere , 2006, 64(4): 658–665
doi: 10.1016/j.chemosphere.2005.10.051 pmid:16343592
12 Wang Y N, Chen J W, Li X H, Wang B, Cai X Y, Huang L P. Predicting rate constants of hydroxyl radical reactions with organic pollutants: Algorithm, validation, applicability domain, and mechanistic interpretation. Atmospheric Environment , 2009, 43(5): 1131–1135
doi: 10.1016/j.atmosenv.2008.11.012
13 Yin L F, Niu J F, Shen Z Y, Chen J. Mechanism of reductive decomposition of pentachlorophenol by Ti-doped β-Bi2O3 under visible light irradiation. Environmental Science &amp; Technology , 2010, 44(14): 5581–5586
doi: 10.1021/es101006s pmid:20583811
14 Yin L F, Niu J F, Shen Z Y, Sun Y. The electron structure and photocatalytic activity of Ti (IV) doped Bi2O3. Science China Chemistry , 2011, 54(1): 180–185
doi: 10.1007/s11426-010-4008-x
15 Yin L F, Shen Z Y, Niu J F, Chen J, Duan Y P. Degradation of pentachlorophenol and 2,4-dichlorophenol by sequential visible-light driven photocatalysis and laccase catalysis. Environmental Science &amp; Technology , 2010, 44(23): 9117–9122
doi: 10.1021/es1025432 pmid:21049990
16 Safe S, Bunce N J, Chittim B, Hutzinger O, Ruzo L O. Photodecomposition of halogenated aromatic compounds. In: Keith L H, ed. Identification and Analysis of Organic Pollutants in Water . Ann Arbor: Ann Arbor Science Publishers Inc., 1975, 35–47
17 Moore T, Pagni R M. Unusual photochemistry of 4-chlorobiphenyl in water. Journal of Organic Chemistry , 1987, 52(5): 770–773
doi: 10.1021/jo00381a012
18 Lores M, Llompart M, González-García R, González-Barreiro C, Cela R. Photolysis of polychlorinated biphenyls by solid-phase microextraction. “On-fibre” versus aqueous photodegradation. Journal of Chromatography. A , 2002, 963(1-2): 37–47
doi: 10.1016/S0021-9673(02)00555-1 pmid:12187992
19 Chang F C, Chiu T C, Yen J H, Wang Y S. Dechlorination pathways of ortho-substituted PCBs by UV irradiation in n-hexane and their correlation to the charge distribution on carbon atom. Chemosphere , 2003, 51(8): 775–784
doi: 10.1016/S0045-6535(03)00003-1 pmid:12668036
20 Chang F C, Hsieh Y N, Wang Y S. Dechlorination of PCBs in water under UV irradiation and the relationship between the electric charge distribution on the carbon atom and the site of dechlorination occurrence. Bulletin of Environmental Contamination and Toxicology , 2003, 71(5): 971–978
doi: 10.1007/s00128-003-8890-1 pmid:14705658
21 Niu J F, Yang Z F, Shen Z Y, Wang L L. QSPRs for the prediction of photodegradation half-life of PCBs in n-hexane. SAR and QSAR in Environmental Research , 2006, 17(2): 173–182
doi: 10.1080/10659360600636170 pmid:16644556
22 Lepine F L, Milot S M, Vincent N M, Gravel D. Photochemistry of higher chlorinated PCBs in cyclohexane. Journal of Agricultural and Food Chemistry , 1991, 39(11): 2053–2056
doi: 10.1021/jf00011a034
23 Miao X S, Chu S G, Xu X B. Photodegradation of 2,2′,5,5′-tetrachlorobiphenyl in hexane. Bulletin of Environmental Contamination and Toxicology , 1996, 56(4): 571–574
doi: 10.1007/s001289900082 pmid:8645912
24 Miao X S, Chu S G, Xu X B. Degradation pathways of PCBs upon UV irradiation in hexane. Chemosphere , 1999, 39(10): 1639–1650
doi: 10.1016/S0045-6535(99)00062-4 pmid:10520484
25 Hawari J, Demeter A, Samson R. Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: dechlorination of Aroclor 1254 in soil samples by solar radiation. Environmental Science &amp; Technology , 1992, 26(10): 2022–2027
doi: 10.1021/es00034a022
26 Huang I W, Hong C S, Bush B. Photocatalytic degradation of PCBs in TiO2 aqueous suspensions. Chemosphere , 1996, 32(9): 1869–1881
doi: 10.1016/0045-6535(96)00080-X pmid:8680826
27 Chen J W, Wang D G, Wang S L, Qiao X L, Huang L P. Quantitative structure-property relationships for direct photolysis of polybrominated diphenyl ethers. Ecotoxicology and Environmental Safety , 2007, 66(3): 348–352
doi: 10.1016/j.ecoenv.2006.01.003 pmid:16488010
28 Long X X, Niu J F. Estimation of gas-phase reaction rate constants of alkylnaphthalenes with chlorine, hydroxyl and nitrate radicals. Chemosphere , 2007, 67(10): 2028–2034
doi: 10.1016/j.chemosphere.2006.11.021 pmid:17239921
29 Niu J, Yu G. Molecular structural characteristics governing biocatalytic chlorination of PAHs by chloroperoxidase from Caldariomyces fumago. SAR and QSAR in Environmental Research , 2004, 15(3): 159–167
doi: 10.1080/10629360410001697799 pmid:15293544
30 Niu J F, Sun P, Schramm K W. Photolysis of polycyclic aromatic hydrocarbons associated with fly ash particles under simulated sunlight irradiation. Journal of Photochemistry and Photobiology A: , 2007, 186(1): 93–98
doi: 10.1016/j.jphotochem.2006.07.016
31 Wang B, Yu G, Hu H, Wang L. Quantitative structure-activity relationships and mixture toxicity of substituted benzaldehydes to Photobacterium phosphoreum. Bulletin of Environmental Contamination and Toxicology , 2007, 78(6): 503–509
doi: 10.1007/s00128-007-9144-4 pmid:17541483
32 Zhang S Y, Chen J W, Qiao X L, Ge L K, Cai X Y, Na G S. Quantum chemical investigation and experimental verification on the aquatic photochemistry of the sunscreen 2-phenylbenzimidazole-5-sulfonic acid. Environmental Science &amp; Technology , 2010, 44(19): 7484–7490
doi: 10.1021/es101131h pmid:20836551
33 Ding G H, Li X, Zhang F, Chen J W, Huang L P, Qiao X L. Mechanism-based quantitative structure-activity relationships on toxicity of selected herbicides to Chlorella vulgaris and Raphidocelis subcapitata. Bulletin of Environmental Contamination and Toxicology , 2009, 83(4): 520–524
doi: 10.1007/s00128-009-9811-8 pmid:19582361
34 Chen J W, Quan X, Yang F L, Peijnenburg W J. Quantitative structure-property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocerasus). The Science of the Total Environment , 2001, 269(1-3): 163–170
doi: 10.1016/S0048-9697(00)00827-5 pmid:11305337
35 Kim M K, O’Keefe P W. Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in aqueous solutions and in organic solvents. Chemosphere , 2000, 41(6): 793–800
doi: 10.1016/S0045-6535(99)00564-0 pmid:10864150
36 Pearson R G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences of the United States of America , 1986, 83(22): 8440–8441
doi: 10.1073/pnas.83.22.8440 pmid:16578791
37 Faucon J C, Bureau R, Faisant J, Briens F, Rault S. Prediction of the fish acute toxicity from heterogeneous data coming from notification files. Chemosphere , 1999, 38(14): 3261–3276
doi: 10.1016/S0045-6535(98)00558-X pmid:10390841
38 Zhang Z Y, Niu J F, Zhi X A. A QSAR model for predicting mutagenicity of nitronaphthalenes and methylnitronaphthalenes. Bulletin of Environmental Contamination and Toxicology , 2008, 81(5): 498–502
doi: 10.1007/s00128-008-9540-4 pmid:18777149
39 Chen J W, Yang P, Chen S, Quan X, Yuan X, Schramm K W, Kettrup A. Quantitative structure-property relationships for vapor pressures of polybrominated diphenyl ethers. SAR and QSAR in Environmental Research , 2003, 14(2): 97–111
doi: 10.1080/1062936031000073135 pmid:12747569
[1] Miao Li, Jian Li, Yuchen Lu, Cenyang Han, Xiaoxuan Wei, Guangcai Ma, Haiying Yu. Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(2): 24-.
[2] Dawei Liang, Shanquan Wang. Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs[J]. Front. Environ. Sci. Eng., 2017, 11(6): 2-.
[3] Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8-.
[4] Fariba Mahmoudkhani, Maryam Rezaei, Vahid Asili, Mahsasadat Atyabi, Elena Vaisman, Cooper H. Langford, Alex De Visscher. Benzene degradation in waste gas by photolysis and photolysis-ozonation: experiments and modeling[J]. Front. Environ. Sci. Eng., 2016, 10(6): 10-.
[5] Qi Zou,Keding Lu,Yusheng Wu,Yudong Yang,Zhuofei Du,Min Hu. Ambient photolysis frequency of NO2 determined using chemical actinometer and spectroradiometer at an urban site in Beijing[J]. Front. Environ. Sci. Eng., 2016, 10(6): 13-.
[6] David R. HOKANSON,Ke LI,R. Rhodes TRUSSELL. A photolysis coefficient for characterizing the response of aqueous constituents to photolysis[J]. Front. Environ. Sci. Eng., 2016, 10(3): 428-437.
[7] Haixia YUAN,Huxiang PAN,Jin SHI,Hongjing LI,Wenbo DONG. Kinetics and mechanisms of reactions for hydrated electron with chlorinated benzenes in aqueous solution[J]. Front. Environ. Sci. Eng., 2015, 9(4): 583-590.
[8] Davoud BEIKNEJAD,Mohammad Javad CHAICHI. Estimation of photolysis half-lives of dyes in a continuous-flow system with the aid of quantitative structure-property relationship[J]. Front.Environ.Sci.Eng., 2014, 8(5): 683-692.
[9] Jun HUANG, Yamei HUI, Toru MATSUMURA, Gang YU, Shubo DENG, Makoto YAMAUCHI, Changmin WU, Norimasa YAMAZAKI. Detailed analysis of PCBs and PCDD/Fs impurities in a dielectric oil sample (ASKAREL Nr 1740) from an imported transformer in China[J]. Front Envir Sci Eng, 2014, 8(2): 195-204.
[10] Osamu SHITAMICHI, Taiki MATSUI, Yamei HUI, Weiwei CHEN, Totaro IMASAKA. Determination of persistent organic pollutants by gas chromatography/laser multiphoton ionization/time-of-flight mass spectrometry[J]. Front Envir Sci Eng, 2012, 6(1): 26-31.
[11] Chad D. VECITIS, Hyunwoong PARK, Jie CHENG, Brian T. MADER, Michael R. HOFFMANN. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)[J]. Front Envir Sci Eng Chin, 2009, 3(2): 129-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed