Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (2) : 24    https://doi.org/10.1007/s11783-020-1316-z
RESEARCH ARTICLE
Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds
Miao Li, Jian Li, Yuchen Lu, Cenyang Han, Xiaoxuan Wei, Guangcai Ma, Haiying Yu()
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
 Download: PDF(311 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• A predictive model for storage lipid/water distribution coefficient was developed.

• The model yields outstanding fitting performance, robustness, and predictive ability.

• Hydrophobic and electrostatic interactions and molecular size dominate log Klip/w.

• The model can be used in a wide application domain to predict log Klip/w values.

The distribution of organic compounds in stored lipids affects their migration, transformation, bioaccumulation, and toxicity in organisms. The storage lipid/water distribution coefficient (log Klip/w) of organic chemicals, which quantitatively determines such distribution, has become a key parameter to assist their ecological security and health risk. Due to the impossibility to measure Klip/w values for a huge amount of chemicals, it is necessary to develop predictive approaches. In this work, a quantitative structure-property relationship (QSPR) model for estimating log Klip/w values of small organic compounds was constructed based on 305 experimental log Klip/w values. Quantum chemical descriptors and n-octanol/water partitioning coefficient were employed to characterize the intermolecular interactions that dominate log Klip/w values. The hydrophobic and electrostatic interactions and molecular size have been found to play important roles in governing the distribution of chemicals between lipids and aqueous phases. The regression (R2 = 0.959) and validation (Q2 = 0.960) results indicate good fitting performance and robustness of the developed model. A comparison with the predictive performance of other commercial software further proves the higher accuracy and stronger predictive ability of the developed Klip/w predictive model. Thus, it can be used to predict the Klip/w values of cycloalkanes, long-chain alkanes, halides (with fluorine, chlorine, and bromine as substituents), esters (without phosphate groups), alcohols (without methoxy groups), and aromatic compounds.

Keywords Storage lipid/water distribution coefficient      log Klip/w      Organic compounds      QSPR      Quantum chemical descriptors     
Corresponding Author(s): Haiying Yu   
Issue Date: 01 September 2020
 Cite this article:   
Miao Li,Jian Li,Yuchen Lu, et al. Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(2): 24.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1316-z
https://academic.hep.com.cn/fese/EN/Y2021/V15/I2/24
Descriptor Description of the descriptor Unit
µ Dipole moment Debye
α The average molecular polarizability a.u.a
EHOMO The energy of the highest occupied molecular orbital eV
ELUMO The energy of the lowest unoccupied molecular orbital eV
σ Softness eV
ŋ Hardness eV
Vs,max The most positive electrostatic potential on the molecular surface eV
Vs,min The most negative electrostatic potential on the molecular surface eV
Vs+ The average value of positive electrostatic potential on the molecular surface eV
Vs The average value of negative electrostatic potential on the molecular surface eV
π The average dispersion of electrostatic potential on the molecular surface eV
τ Equilibrium constants of the electrostatic potential on the molecular surface
Mw Molecular mass a.u.
V Molecular volume cm3/mol
log Kow n-octanol/water partition coefficient
Tab.1  All molecular structure descriptors for developing the QSPR model
Fig.1  The fitting plot of the experimental and predictive log Klip/w calculated by Model (3).
N R2 Q2 RMSE BIAS MAE MPE MNE
Model (2) 305 0.955 0.955 0.468 -0.035 0.375 1.445 -1.636
Model (3) 302 0.959 0.959 0.443 -0.036 0.363 1.313 -1.082
Training set 211 0.958 0.958 0.445 0.000 0.363 1.344 -1.081
Test set 91 0.962 0.960 0.444 0.097 0.349 1.149 -0.895
Tab.2  The statistical performance of model regression and validation a
Fig.2  The Williams plot of Model (3).
Models N R2 Q2 RMSE BIAS MAE MPE MNE
QSPR Model 302 0.959 0.959 0.443 -0.036 0.363 1.313 -1.082
ABSOLVa 304 0.932 0.923 0.610 0.191 0.500 1.540 -1.650
SPARC v 4.5a 302 0.950 0.940 0.540 -0.017 0.368 3.840 -1.290
COSMOtherma 304 0.963 0.949 0.498 -0.185 0.357 3.660 -1.500
KOWWINa 305 0.931 0.925 0.600 0.092 0.464 1.940 -1.680
Tab.3  Statistical parameters for predicting log Klip/w values of organic compounds by different methods
1 J J Alava, J M Keller, J R Kucklick, J Wyneken, L Crowder, G I Scott (2006). Loggerhead sea turtle (Caretta caretta) egg yolk concentrations of persistent organic pollutants and lipid increase during the last stage of embryonic development. Science of the Total Environment, 367(1): 170–181
https://doi.org/10.1016/j.scitotenv.2006.02.029
2 A Avdeef (2012). Absorption and Drug Development: Solubility, Permeability, and Charge State. Hoboken: John Wiley & Sons
3 S Bakire, X Y Yang, G C Ma, X X Wei, H Y Yu, J R Chen, H J Lin (2018). Developing predictive models for toxicity of organic chemicals to green algae based on mode of action. Chemosphere, 190: 463–470
https://doi.org/10.1016/j.chemosphere.2017.10.028
4 K Bittermann, S Spycher, S Endo, L Pohler, U Huniar, K U Goss, A Klamt (2014). Prediction of phospholipid–water partition coefficients of ionic organic chemicals using the mechanistic model COSMO mic. Journal of Physical Chemistry B, 118(51): 14833–14842
https://doi.org/10.1021/jp509348a
5 K Carlsson, B Karlberg (2000). Determination of octanol–water partition coefficients using a micro-volume liquid-liquid flow extraction system. Analytica Chimica Acta, 423(1): 137–144
https://doi.org/10.1016/S0003-2670(00)01078-3
6 J W Chen, X H Li, H Y Yu, Y N Wang, X L Qiao (2008). Progress and perspectives of quantitative structure-activity relationships used for ecological risk assessment of toxic organic compounds. Science in China. Series B, Chemistry, 51(7): 593–606
https://doi.org/10.1007/s11426-008-0076-6
7 J W Chen, X Y Xue, K W Schramm, X Quan, F L Yang, A Kettrup (2002). Quantitative structure–property relationships for octanol–air partition coefficients of polychlorinated biphenyls. Chemosphere, 48(5): 535–544
https://doi.org/10.1016/S0045-6535(02)00103-0
8 A Cherkasov, E N Muratov, D Fourches, A Varnek, I I Baskin, M Cronin, J Dearden, P Gramatica, Y C Martin, R Todeschini, V Consonni, V E Kuzmin, R Cramer, R Benigni, C Yang, J Rathman, L Terfloth, J Gasteiger, A Richard, A Tropsha (2014). QSAR modeling: where have you been? Where are you going to? Journal of Medicinal Chemistry, 57(12): 4977–5010
https://doi.org/10.1021/jm4004285
9 S Endo, T N Brown, K U Goss (2013). General model for estimating partition coefficients to organisms and their tissues using the biological compositions and polyparameter linear free energy relationships. Environmental Science & Technology, 47(12): 6630–6639
https://doi.org/10.1021/es401772m
10 S Endo, B I Escher, K U Goss (2011). Capacities of membrane lipids to accumulate neutral organic chemicals. Environmental Science & Technology, 45(14): 5912–5921
https://doi.org/10.1021/es200855w
11 Q Y Feng, T Wu, Y Wan, X Q Liu, Y Liu (2017). Environmental behavior of persistent organic pollutants in aquatic ecosystem. Acta Ecologica Sinica, 37(9): 2845–2857
12 M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb, J R Cheeseman, G Scalmani, V Barone, B Mennucci, G A Petersson, H Nakatsuji, M Caricato, X Li, H P Hratchian, A F Izmaylov, J Bloino, G Zheng, J L Sonnenberg, E M Hada, K Toyota, R Fukuda, J Hasegawa, M Ishida, T Nakajima, Y Honda, O Kitao, H Nakai, T Vreven, J A Montgomery, J Peralta, J E Ogliaro, F Bearpark, M Heyd, J J Brothers, E Kudin, K N Staroverov, V N Kobayashi, R Normand, J Raghavachari, K Rendell, A Burant, J C Iyengar, T S S Cossi, N Rega, J M Millam, M Klene, J E Knox, J B Cross, V Bakken, C Adamo, J Jaramillo, R Gomperts, R E Stratmann, O Yazyev, A J Austin, R Cammi, C Pomelli, J W Ochterski, R L Martin, K Morokuma, V G Zakrzewski, G A Voth, P Salvador, J J Dannenberg, S Dapprich, F A D Daniels, J B Foresman, J V Ortiz, J Cioslowski, D J Fox (2013). Gaussian 09, Revision D.01. Gaussian, Inc.: Wallingford CT
13 A Geisler, S Endo, K U Goss (2012). Partitioning of organic chemicals to storage lipids: elucidating the dependence on fatty acid composition and temperature. Environmental Science & Technology, 46(17): 9519–9524
https://doi.org/10.1021/es301921w
14 A Geisler, L Oemisch, S Endo, K U Goss (2015). Predicting storage–lipid water partitioning of organic solutes from molecular structure. Environmental Science & Technology, 49(9): 5538–5545
https://doi.org/10.1021/es506336m
15 M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, I H Witten (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1): 10–18
https://doi.org/10.1145/1656274.1656278
16 X Y Hu, T Yang, C Liu, J Jin, B L Gao, X J Wang, M Qi, B K Wei, Y Y Zhan, T Chen, H T Wang, Y T Liu, D R Bai, Z Rao, N Zhan (2020). Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China. Frontiers of Environmental Science & Engineering, 14 (4): 66
17 X M Jiang, W L Wei, Z N Xia, Z T Chen (2006). A novel microemulsion electrokinetic chromatography for measuring lipid-water partition coefficients of pharmaceuticals. Acta Pharmaceutica Sinica, 41(10): 1020–1024 (in Chinese)
18 S D Krämer (2007). Liposome/water partitioning: Theory, techniques and applications. Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical and Computational Strategies, 401–428
19 S Liu, L Jin, H Yu, L Lv, C E Chen, G Ying (2020). Understanding and predicting the diffusivity of organic chemicals for diffusive gradients in thin-films using a QSPR model. Science of the Total Environment, 706: 135691
https://doi.org/10.1016/j.scitotenv.2019.135691
20 G C Ma, H Y Yu, X Q Xu, L M Geng, X X Wei, J L Wen, Z WangG (2020). Molecular basis for metabolic regioselectivity and mechanism of cytochrome P450s toward carcinogenic 4-(methylnitrosamino)-(3-pyridyl)-1-butanone. Chemical Research in Toxicology, 33(2): 436–447
https://doi.org/10.1021/acs.chemrestox.9b00353
21 G C Ma, Q Yuan, H Y Yu, H J Lin, J R Chen, H C Hong (2017). Development and evaluation of predictive model for bovine serum albumin-water partition coefficients of neutral organic chemicals. Ecotoxicology and Environmental Safety, 138: 92–97
https://doi.org/10.1016/j.ecoenv.2016.12.022
22 M S McLachlan (1995). Bioaccumulation of hydrophobic chemicals in agricultural food chains. Environmental Science & Technology, 30(1): 252–259
https://doi.org/10.1021/es9502738
23 C F Poole, S N Atapattu, S K Poole, A K Bell (2009). Determination of solute descriptors by chromatographic methods. Analytica Chimica Acta, 652(1–2): 32–53
https://doi.org/10.1016/j.aca.2009.04.038
24 J Sikkema, J A De Bont, B Poolman (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59(2): 201–222
https://doi.org/10.1128/MMBR.59.2.201-222.1995
25 L Tian (2010). “GsGrid: Extracting data from Gaussian grid file and grid file calculation”, Version 1.7, Available at the website of
26 United States Environmental Protection Agency (U.S. EPA) (2015). Estimation Programs Interface Suite™ for Microsoft® Windows, V. 4.11, Microsoft Inc.: Washington, DC, USA, Available at the website of.
27 B Wang, J W Chen, X H Li, Y N Wang, L Chen, M Zhu, H Y Yu, R Kühne, G Schüürmann (2009). Estimation of soil organic carbon normalized sorption coefficient (Koc) using least squares-support vector machine. QSAR & Combinatorial Science, 28(5): 561–567
https://doi.org/10.1002/qsar.200860065
28 Z Wang, X Zeng, Z Zhai (2008). Prediction of supercooled liquid vapor pressures and n-octanol/air partition coefficients for polybrominated diphenyl ethers by means of molecular descriptors from DFT method. Science of the Total Environment, 389(2–3): 296–305
https://doi.org/10.1016/j.scitotenv.2007.08.023
29 X X Wei, M Li, Y F Wang, L M Jin, G C Ma, H Yu Y (2019). Developing predictive models for carrying ability of micro-plastics towards organic pollutants. Molecules, 24(9): 1784
https://doi.org/10.3390/molecules24091784
30 A P van Wezel, A Opperhuizen (1995). Thermodynamics of partitioning of a series of chlorobenzenes to fish storage lipids, in comparison to partitioning to phospholipids. Chemosphere, 31(7): 3605–3615
https://doi.org/10.1016/0045-6535(95)00209-Q
31 X W Yi, Z Q Gao, L H Liu, Q Zhu, G J Hu, X H Zhou (2020) Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China. Frontiers of Environmental Science & Engineering, 14 (6): 109
32 H Yu, D Wondrousch, F Li, J Chen, H Lin, L Ji (2015). In silico investigation of the thyroid hormone activity of hydroxylated polybrominated diphenyl ethers. Chemical Research in Toxicology, 28(8): 1538–1545
https://doi.org/10.1021/acs.chemrestox.5b00127
[1] FSE-20097-OF-LM_suppl_1 Download
[1] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[2] Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Front. Environ. Sci. Eng., 2019, 13(2): 30-.
[3] Qiang Li, Xiong Xu, Yaoyao Fang, Ruiyang Xiao, Donghong Wang, Wenjue Zhong. The temporal changes of the concentration level of typical toxic organics in the river sediments around Beijing[J]. Front. Environ. Sci. Eng., 2018, 12(6): 8-.
[4] Yang-ying Zhao, Fan-xin Kong, Zhi Wang, Hong-wei Yang, Xiao-mao Wang, Yuefeng F. Xie, T. David Waite. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes[J]. Front. Environ. Sci. Eng., 2017, 11(6): 20-.
[5] Kajetan Kalus, Sebastian Opaliński, Devin Maurer, Somchai Rice, Jacek A. Koziel, Mariusz Korczyński, Zbigniew Dobrzański, Roman Kołacz, Beata Gutarowska. Odour reducing microbial-mineral additive for poultry manure treatment[J]. Front. Environ. Sci. Eng., 2017, 11(3): 7-.
[6] Pu ZHAO,Lizhong ZHU. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air[J]. Front. Environ. Sci. Eng., 2016, 10(2): 219-228.
[7] Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 73-84.
[8] Jinying XI,Insun KANG,Hongying HU,Xian ZHANG. A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings[J]. Front. Environ. Sci. Eng., 2015, 9(3): 554-562.
[9] Wei WEI, Shuxiao WANG, Jiming HAO, Shuiyuan CHENG. Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020[J]. Front Envir Sci Eng, 2014, 8(1): 27-41.
[10] Junhua LI, Hong HE, Chun HU, Jincai ZHAO. The abatement of major pollutants in air and water by environmental catalysis[J]. Front Envir Sci Eng, 2013, 7(3): 302-325.
[11] Can WANG, Jinying XI, Hongying HU, Insun KANG. Effects of design parameters on performance and cost analysis of combined ultraviolet-biofilter systems treating gaseous chlorobenzene based on mathematical modeling[J]. Front Envir Sci Eng, 2012, 6(4): 588-594.
[12] Yueping BAO, Qiuying HUANG, Wenlong WANG, Jiangjie XU, Fan JIANG, Chenghong FENG. Application of quantum chemical descriptors into quantitative structure-property relationship models for prediction of the photolysis half-life of PCBs in water[J]. Front Envir Sci Eng Chin, 2011, 5(4): 505-511.
[13] Yongtao LI, Christina L. MCCARTY, Ed J. GEORGE. Determination of selected semi-volatile organic compounds in water using automated online solid-phase extraction with large-volume injection/gas chromatography/mass spectrometry[J]. Front Envir Sci Eng Chin, 2011, 5(3): 417-425.
[14] Dan WU, Chunyan ZHANG, Li HAO, Changjun GENG, Xie QUAN, . Removal of multicomponent VOCs in off-gases from an oil refining wastewater treatment plant by a compost-based biofilter system[J]. Front.Environ.Sci.Eng., 2009, 3(4): 483-491.
[15] LU Bin, JI Min, YU Xin, FENG Tao, YAO Shuiliang. Benzene conversion by manganese dioxide assisted silent discharge plasma[J]. Front.Environ.Sci.Eng., 2007, 1(4): 477-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed